File size: 15,327 Bytes
865fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import pickle
import sys
import os

sys.path.append(os.getcwd())

import json
from glob import glob
from data_utils.utils import *
import torch.utils.data as data
from data_utils.consts import speaker_id
from data_utils.lower_body import count_part
import random
from data_utils.rotation_conversion import axis_angle_to_matrix, matrix_to_rotation_6d

with open('data_utils/hand_component.json') as file_obj:
    comp = json.load(file_obj)
    left_hand_c = np.asarray(comp['left'])
    right_hand_c = np.asarray(comp['right'])


def to3d(data):
    left_hand_pose = np.einsum('bi,ij->bj', data[:, 75:87], left_hand_c[:12, :])
    right_hand_pose = np.einsum('bi,ij->bj', data[:, 87:99], right_hand_c[:12, :])
    data = np.concatenate((data[:, :75], left_hand_pose, right_hand_pose), axis=-1)
    return data


class SmplxDataset():
    '''
    creat a dataset for every segment and concat.
    '''

    def __init__(self,
                 data_root,
                 speaker,
                 motion_fn,
                 audio_fn,
                 audio_sr,
                 fps,
                 feat_method='mel_spec',
                 audio_feat_dim=64,
                 audio_feat_win_size=None,

                 train=True,
                 load_all=False,
                 split_trans_zero=False,
                 limbscaling=False,
                 num_frames=25,
                 num_pre_frames=25,
                 num_generate_length=25,
                 context_info=False,
                 convert_to_6d=False,
                 expression=False,
                 config=None,
                 am=None,
                 am_sr=None,
                 whole_video=False
                 ):

        self.data_root = data_root
        self.speaker = speaker

        self.feat_method = feat_method
        self.audio_fn = audio_fn
        self.audio_sr = audio_sr
        self.fps = fps
        self.audio_feat_dim = audio_feat_dim
        self.audio_feat_win_size = audio_feat_win_size
        self.context_info = context_info  # for aud feat
        self.convert_to_6d = convert_to_6d
        self.expression = expression

        self.train = train
        self.load_all = load_all
        self.split_trans_zero = split_trans_zero
        self.limbscaling = limbscaling
        self.num_frames = num_frames
        self.num_pre_frames = num_pre_frames
        self.num_generate_length = num_generate_length
        # print('num_generate_length ', self.num_generate_length)

        self.config = config
        self.am_sr = am_sr
        self.whole_video = whole_video
        load_mode = self.config.dataset_load_mode

        if load_mode == 'pickle':
            raise NotImplementedError

        elif load_mode == 'csv':
            import pickle
            with open(data_root, 'rb') as f:
                u = pickle._Unpickler(f)
                data = u.load()
                self.data = data[0]
            if self.load_all:
                self._load_npz_all()

        elif load_mode == 'json':
            self.annotations = glob(data_root + '/*pkl')
            if len(self.annotations) == 0:
                raise FileNotFoundError(data_root + ' are empty')
            self.annotations = sorted(self.annotations)
            self.img_name_list = self.annotations

            if self.load_all:
                self._load_them_all(am, am_sr, motion_fn)

    def _load_npz_all(self):
        self.loaded_data = {}
        self.complete_data = []
        data = self.data
        shape = data['body_pose_axis'].shape[0]
        self.betas = data['betas']
        self.img_name_list = []
        for index in range(shape):
            img_name = f'{index:6d}'
            self.img_name_list.append(img_name)

            jaw_pose = data['jaw_pose'][index]
            leye_pose = data['leye_pose'][index]
            reye_pose = data['reye_pose'][index]
            global_orient = data['global_orient'][index]
            body_pose = data['body_pose_axis'][index]
            left_hand_pose = data['left_hand_pose'][index]
            right_hand_pose = data['right_hand_pose'][index]

            full_body = np.concatenate(
                (jaw_pose, leye_pose, reye_pose, global_orient, body_pose, left_hand_pose, right_hand_pose))
            assert full_body.shape[0] == 99
            if self.convert_to_6d:
                full_body = to3d(full_body)
                full_body = torch.from_numpy(full_body)
                full_body = matrix_to_rotation_6d(axis_angle_to_matrix(full_body))
                full_body = np.asarray(full_body)
                if self.expression:
                    expression = data['expression'][index]
                    full_body = np.concatenate((full_body, expression))
                # full_body = np.concatenate((full_body, non_zero))
            else:
                full_body = to3d(full_body)
                if self.expression:
                    expression = data['expression'][index]
                    full_body = np.concatenate((full_body, expression))

            self.loaded_data[img_name] = full_body.reshape(-1)
            self.complete_data.append(full_body.reshape(-1))

        self.complete_data = np.array(self.complete_data)

        if self.audio_feat_win_size is not None:
            self.audio_feat = get_mfcc_old(self.audio_fn).transpose(1, 0)
            # print(self.audio_feat.shape)
        else:
            if self.feat_method == 'mel_spec':
                self.audio_feat = get_melspec(self.audio_fn, fps=self.fps, sr=self.audio_sr, n_mels=self.audio_feat_dim)
            elif self.feat_method == 'mfcc':
                self.audio_feat = get_mfcc(self.audio_fn,
                                           smlpx=True,
                                           sr=self.audio_sr,
                                           n_mfcc=self.audio_feat_dim,
                                           win_size=self.audio_feat_win_size
                                           )

    def _load_them_all(self, am, am_sr, motion_fn):
        self.loaded_data = {}
        self.complete_data = []
        f = open(motion_fn, 'rb+')
        data = pickle.load(f)

        self.betas = np.array(data['betas'])

        jaw_pose = np.array(data['jaw_pose'])
        leye_pose = np.array(data['leye_pose'])
        reye_pose = np.array(data['reye_pose'])
        global_orient = np.array(data['global_orient']).squeeze()
        body_pose = np.array(data['body_pose_axis'])
        left_hand_pose = np.array(data['left_hand_pose'])
        right_hand_pose = np.array(data['right_hand_pose'])

        full_body = np.concatenate(
            (jaw_pose, leye_pose, reye_pose, global_orient, body_pose, left_hand_pose, right_hand_pose), axis=1)
        assert full_body.shape[1] == 99


        if self.convert_to_6d:
            full_body = to3d(full_body)
            full_body = torch.from_numpy(full_body)
            full_body = matrix_to_rotation_6d(axis_angle_to_matrix(full_body.reshape(-1, 55, 3))).reshape(-1, 330)
            full_body = np.asarray(full_body)
            if self.expression:
                expression = np.array(data['expression'])
                full_body = np.concatenate((full_body, expression), axis=1)

        else:
            full_body = to3d(full_body)
            expression = np.array(data['expression'])
            full_body = np.concatenate((full_body, expression), axis=1)

        self.complete_data = full_body
        self.complete_data = np.array(self.complete_data)

        if self.audio_feat_win_size is not None:
            self.audio_feat = get_mfcc_old(self.audio_fn).transpose(1, 0)
        else:
            # if self.feat_method == 'mel_spec':
            #     self.audio_feat = get_melspec(self.audio_fn, fps=self.fps, sr=self.audio_sr, n_mels=self.audio_feat_dim)
            # elif self.feat_method == 'mfcc':
            self.audio_feat = get_mfcc_ta(self.audio_fn,
                                          smlpx=True,
                                          fps=30,
                                          sr=self.audio_sr,
                                          n_mfcc=self.audio_feat_dim,
                                          win_size=self.audio_feat_win_size,
                                          type=self.feat_method,
                                          am=am,
                                          am_sr=am_sr,
                                          encoder_choice=self.config.Model.encoder_choice,
                                          )
            # with open(audio_file, 'w', encoding='utf-8') as file:
            #     file.write(json.dumps(self.audio_feat.__array__().tolist(), indent=0, ensure_ascii=False))

    def get_dataset(self, normalization=False, normalize_stats=None, split='train'):

        class __Worker__(data.Dataset):
            def __init__(child, index_list, normalization, normalize_stats, split='train') -> None:
                super().__init__()
                child.index_list = index_list
                child.normalization = normalization
                child.normalize_stats = normalize_stats
                child.split = split

            def __getitem__(child, index):
                num_generate_length = self.num_generate_length
                num_pre_frames = self.num_pre_frames
                seq_len = num_generate_length + num_pre_frames
                # print(num_generate_length)

                index = child.index_list[index]
                index_new = index + random.randrange(0, 5, 3)
                if index_new + seq_len > self.complete_data.shape[0]:
                    index_new = index
                index = index_new

                if child.split in ['val', 'pre', 'test'] or self.whole_video:
                    index = 0
                    seq_len = self.complete_data.shape[0]
                seq_data = []
                assert index + seq_len <= self.complete_data.shape[0]
                # print(seq_len)
                seq_data = self.complete_data[index:(index + seq_len), :]
                seq_data = np.array(seq_data)

                '''
                audio feature,
                '''
                if not self.context_info:
                    if not self.whole_video:
                        audio_feat = self.audio_feat[index:index + seq_len, ...]
                        if audio_feat.shape[0] < seq_len:
                            audio_feat = np.pad(audio_feat, [[0, seq_len - audio_feat.shape[0]], [0, 0]],
                                                mode='reflect')

                        assert audio_feat.shape[0] == seq_len and audio_feat.shape[1] == self.audio_feat_dim
                    else:
                        audio_feat = self.audio_feat

                else:  # including feature and history
                    if self.audio_feat_win_size is None:
                        audio_feat = self.audio_feat[index:index + seq_len + num_pre_frames, ...]
                        if audio_feat.shape[0] < seq_len + num_pre_frames:
                            audio_feat = np.pad(audio_feat,
                                                [[0, seq_len + self.num_frames - audio_feat.shape[0]], [0, 0]],
                                                mode='constant')

                        assert audio_feat.shape[0] == self.num_frames + seq_len and audio_feat.shape[
                            1] == self.audio_feat_dim

                if child.normalization:
                    data_mean = child.normalize_stats['mean'].reshape(1, -1)
                    data_std = child.normalize_stats['std'].reshape(1, -1)
                    seq_data[:, :330] = (seq_data[:, :330] - data_mean) / data_std
                if child.split in['train', 'test']:
                    if self.convert_to_6d:
                        if self.expression:
                            data_sample = {
                                'poses': seq_data[:, :330].astype(np.float).transpose(1, 0),
                                'expression': seq_data[:, 330:].astype(np.float).transpose(1, 0),
                                # 'nzero': seq_data[:, 375:].astype(np.float).transpose(1, 0),
                                'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
                                'speaker': speaker_id[self.speaker],
                                'betas': self.betas,
                                'aud_file': self.audio_fn,
                            }
                        else:
                            data_sample = {
                                'poses': seq_data[:, :330].astype(np.float).transpose(1, 0),
                                'nzero': seq_data[:, 330:].astype(np.float).transpose(1, 0),
                                'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
                                'speaker': speaker_id[self.speaker],
                                'betas': self.betas
                            }
                    else:
                        if self.expression:
                            data_sample = {
                                'poses': seq_data[:, :165].astype(np.float).transpose(1, 0),
                                'expression': seq_data[:, 165:].astype(np.float).transpose(1, 0),
                                'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
                                # 'wv2_feat': wv2_feat.astype(np.float).transpose(1, 0),
                                'speaker': speaker_id[self.speaker],
                                'aud_file': self.audio_fn,
                                'betas': self.betas
                            }
                        else:
                            data_sample = {
                                'poses': seq_data.astype(np.float).transpose(1, 0),
                                'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
                                'speaker': speaker_id[self.speaker],
                                'betas': self.betas
                            }
                    return data_sample
                else:
                    data_sample = {
                        'poses': seq_data[:, :330].astype(np.float).transpose(1, 0),
                        'expression': seq_data[:, 330:].astype(np.float).transpose(1, 0),
                        # 'nzero': seq_data[:, 325:].astype(np.float).transpose(1, 0),
                        'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
                        'aud_file': self.audio_fn,
                        'speaker': speaker_id[self.speaker],
                        'betas': self.betas
                    }
                    return data_sample
            def __len__(child):
                return len(child.index_list)

        if split == 'train':
            index_list = list(
                range(0, min(self.complete_data.shape[0], self.audio_feat.shape[0]) - self.num_generate_length - self.num_pre_frames,
                      6))
        elif split in ['val', 'test']:
            index_list = list([0])
        if self.whole_video:
            index_list = list([0])
        self.all_dataset = __Worker__(index_list, normalization, normalize_stats, split)

    def __len__(self):
        return len(self.img_name_list)