File size: 11,028 Bytes
865fd8a
 
 
fd426a2
3ed0c2e
 
4fc47ea
3ed0c2e
 
 
2027b5f
7856a23
 
eb4fa0f
 
fd0812c
 
 
b8976d5
 
 
 
2027b5f
505fcb7
865fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f122ecf
 
865fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f122ecf
865fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c1c3c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import gradio as gr
import os
import sys
# import OpenGL.GL as gl
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
os.system('pip install /home/user/app/pyrender')
sys.path.append('/home/user/app/pyrender')
# os.system(r"apt-get install -y python-opengl libosmesa6")
sys.path.append(os.getcwd())
# os.system(r"cd mesh-master")
# os.system(r"tar -jxvf boost_1_79_0.tar.bz2")
# os.system(r"mv boost_1_79_0 boost")
# os.system(r"CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/home/user/app/boost")
# os.system(r"export LIBRARY_PATH=$LIBRARY_PATH:/home/user/app/boost/stage/lib")
# os.system(r"apt-get update")
# os.system(r"apt-get install sudo")
#
# os.system(r"apt-get install libboost-dev")
# # os.system(r"sudo apt-get install gcc")
# # os.system(r"sudo apt-get install g++")
# os.system(r"make -C ./mesh-master all")
# os.system(r"cd ..")
# os.system("pip install --no-deps --verbose --no-cache-dir /home/user/app/mesh-fix-MSVC_compilation")

from transformers import Wav2Vec2Processor

import numpy as np
import json
import smplx as smpl

from nets import *
from trainer.options import parse_args
from data_utils import torch_data
from trainer.config import load_JsonConfig

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
from visualise.rendering import RenderTool

global device
is_cuda = torch.cuda.is_available()
device = torch.device("cuda" if is_cuda else "cpu")


def init_model(model_name, model_path, args, config):
    if model_name == 's2g_face':
        generator = s2g_face(
            args,
            config,
        )
    elif model_name == 's2g_body_vq':
        generator = s2g_body_vq(
            args,
            config,
        )
    elif model_name == 's2g_body_pixel':
        generator = s2g_body_pixel(
            args,
            config,
        )
    elif model_name == 's2g_LS3DCG':
        generator = LS3DCG(
            args,
            config,
        )
    else:
        raise NotImplementedError

    model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
    if model_name == 'smplx_S2G':
        generator.generator.load_state_dict(model_ckpt['generator']['generator'])

    elif 'generator' in list(model_ckpt.keys()):
        generator.load_state_dict(model_ckpt['generator'])
    else:
        model_ckpt = {'generator': model_ckpt}
        generator.load_state_dict(model_ckpt)

    return generator


def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
    vertices_list = []
    poses_list = []
    expression = torch.zeros([1, 100])

    for i in result_list:
        vertices = []
        poses = []
        for j in range(i.shape[0]):
            output = smplx_model(betas=betas,
                                 expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression,
                                 jaw_pose=i[j][0:3].unsqueeze_(dim=0),
                                 leye_pose=i[j][3:6].unsqueeze_(dim=0),
                                 reye_pose=i[j][6:9].unsqueeze_(dim=0),
                                 global_orient=i[j][9:12].unsqueeze_(dim=0),
                                 body_pose=i[j][12:75].unsqueeze_(dim=0),
                                 left_hand_pose=i[j][75:120].unsqueeze_(dim=0),
                                 right_hand_pose=i[j][120:165].unsqueeze_(dim=0),
                                 return_verts=True)
            vertices.append(output.vertices.detach().cpu().numpy().squeeze())
            # pose = torch.cat([output.body_pose, output.left_hand_pose, output.right_hand_pose], dim=1)
            pose = output.body_pose
            poses.append(pose.detach().cpu())
        vertices = np.asarray(vertices)
        vertices_list.append(vertices)
        poses = torch.cat(poses, dim=0)
        poses_list.append(poses)
    if require_pose:
        return vertices_list, poses_list
    else:
        return vertices_list, None


global_orient = torch.tensor([3.0747, -0.0158, -0.0152])

parser = parse_args()
args = parser.parse_args()
args.gpu = device

RUN_MODE = "local"
if RUN_MODE != "local":
    os.system("wget -P experiments/2022-10-15-smplx_S2G-face-3d/ "
              "https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-15-smplx_S2G-face-3d/ckpt-99.pth")
    os.system("wget -P experiments/2022-10-31-smplx_S2G-body-vq-3d/ "
              "https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-31-smplx_S2G-body-vq-3d/ckpt-99.pth")
    os.system("wget -P experiments/2022-11-02-smplx_S2G-body-pixel-3d/ "
              "https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-11-02-smplx_S2G-body-pixel-3d/ckpt-99.pth")
    os.system("wget -P visualise/smplx/ "
              "https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/smplx/SMPLX_NEUTRAL.npz")

config = load_JsonConfig("config/body_pixel.json")

face_model_name = args.face_model_name
face_model_path = args.face_model_path
body_model_name = args.body_model_name
body_model_path = args.body_model_path
smplx_path = './visualise/'

os.environ['smplx_npz_path'] = config.smplx_npz_path
os.environ['extra_joint_path'] = config.extra_joint_path
os.environ['j14_regressor_path'] = config.j14_regressor_path

print('init model...')
g_body = init_model(body_model_name, body_model_path, args, config)
generator2 = None
g_face = init_model(face_model_name, face_model_path, args, config)

print('init smlpx model...')
dtype = torch.float64
model_params = dict(model_path=smplx_path,
                    model_type='smplx',
                    create_global_orient=True,
                    create_body_pose=True,
                    create_betas=True,
                    num_betas=300,
                    create_left_hand_pose=True,
                    create_right_hand_pose=True,
                    use_pca=False,
                    flat_hand_mean=False,
                    create_expression=True,
                    num_expression_coeffs=100,
                    num_pca_comps=12,
                    create_jaw_pose=True,
                    create_leye_pose=True,
                    create_reye_pose=True,
                    create_transl=False,
                    # gender='ne',
                    dtype=dtype, )
smplx_model = smpl.create(**model_params).to(device)
print('init rendertool...')
rendertool = RenderTool('visualise/video/' + config.Log.name)


def infer(wav, identity, pose):
    betas = torch.zeros([1, 300], dtype=torch.float64).to(device)
    am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
    am_sr = 16000
    num_sample = args.num_sample
    cur_wav_file = wav

    if pose == 'Stand':
        stand = True
        face = False
    elif pose == 'Sit':
        stand = False
        face = False
    else:
        stand = False
        face = True

    if face:
        body_static = torch.zeros([1, 162], device=device)
        body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1)

    if identity == 'Oliver':
        id = 0
    elif identity == 'Chemistry':
        id = 1
    elif identity == 'Seth':
        id = 2
    elif identity == 'Conan':
        id = 3

    result_list = []

    pred_face = g_face.infer_on_audio(cur_wav_file,
                                      initial_pose=None,
                                      norm_stats=None,
                                      w_pre=False,
                                      # id=id,
                                      frame=None,
                                      am=am,
                                      am_sr=am_sr
                                      )
    pred_face = torch.tensor(pred_face).squeeze().to(device)
    # pred_face = torch.zeros([gt.shape[0], 105])

    if config.Data.pose.convert_to_6d:
        pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
        pred_jaw = matrix_to_axis_angle(rotation_6d_to_matrix(pred_jaw)).reshape(pred_face.shape[0], -1)
        pred_face = pred_face[:, 6:]
    else:
        pred_jaw = pred_face[:, :3]
        pred_face = pred_face[:, 3:]

    id = torch.tensor([id], device=device)

    for i in range(num_sample):
        pred_res = g_body.infer_on_audio(cur_wav_file,
                                         initial_pose=None,
                                         norm_stats=None,
                                         txgfile=None,
                                         id=id,
                                         var=None,
                                         fps=30,
                                         w_pre=False
                                         )
        pred = torch.tensor(pred_res).squeeze().to(device)

        if pred.shape[0] < pred_face.shape[0]:
            repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
            pred = torch.cat([pred, repeat_frame], dim=0)
        else:
            pred = pred[:pred_face.shape[0], :]

        body_or_face = False
        if pred.shape[1] < 275:
            body_or_face = True
        if config.Data.pose.convert_to_6d:
            pred = pred.reshape(pred.shape[0], -1, 6)
            pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred))
            pred = pred.reshape(pred.shape[0], -1)

        if config.Model.model_name == 's2g_LS3DCG':
            pred = torch.cat([pred[:, :3], pred[:, 103:], pred[:, 3:103]], dim=-1)
        else:
            pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)

        # pred[:, 9:12] = global_orient
        pred = part2full(pred, stand)
        if face:
            pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
        # result_list[0] = poses2pred(result_list[0], stand)
        # if gt_0 is None:
        #     gt_0 = gt
        # pred = pred2poses(pred, gt_0)
        # result_list[0] = poses2poses(result_list[0], gt_0)

        result_list.append(pred)


    vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)

    result_list = [res.to('cpu') for res in result_list]
    dict = np.concatenate(result_list[:], axis=0)

    rendertool._render_sequences(cur_wav_file, vertices_list, stand=stand, face=face, whole_body=args.whole_body)
    return "result.mp4"

def main():

    iface = gr.Interface(fn=infer, inputs=["audio",
                                           gr.Radio(["Oliver", "Chemistry", "Seth", "Conan"]),
                                           gr.Radio(["Stand", "Sit", "Only Face"]),
                                           ],
                         outputs="video",
                         examples=[[os.path.join(os.path.dirname(__file__), "demo_audio/style.wav"), "Oliver", "Sit"]])
    iface.launch(debug=True)


if __name__ == '__main__':
    main()