Spaces:
Build error
Build error
File size: 11,028 Bytes
865fd8a fd426a2 3ed0c2e 4fc47ea 3ed0c2e 2027b5f 7856a23 eb4fa0f fd0812c b8976d5 2027b5f 505fcb7 865fd8a f122ecf 865fd8a f122ecf 865fd8a 0c1c3c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import gradio as gr
import os
import sys
# import OpenGL.GL as gl
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
os.system('pip install /home/user/app/pyrender')
sys.path.append('/home/user/app/pyrender')
# os.system(r"apt-get install -y python-opengl libosmesa6")
sys.path.append(os.getcwd())
# os.system(r"cd mesh-master")
# os.system(r"tar -jxvf boost_1_79_0.tar.bz2")
# os.system(r"mv boost_1_79_0 boost")
# os.system(r"CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/home/user/app/boost")
# os.system(r"export LIBRARY_PATH=$LIBRARY_PATH:/home/user/app/boost/stage/lib")
# os.system(r"apt-get update")
# os.system(r"apt-get install sudo")
#
# os.system(r"apt-get install libboost-dev")
# # os.system(r"sudo apt-get install gcc")
# # os.system(r"sudo apt-get install g++")
# os.system(r"make -C ./mesh-master all")
# os.system(r"cd ..")
# os.system("pip install --no-deps --verbose --no-cache-dir /home/user/app/mesh-fix-MSVC_compilation")
from transformers import Wav2Vec2Processor
import numpy as np
import json
import smplx as smpl
from nets import *
from trainer.options import parse_args
from data_utils import torch_data
from trainer.config import load_JsonConfig
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
from visualise.rendering import RenderTool
global device
is_cuda = torch.cuda.is_available()
device = torch.device("cuda" if is_cuda else "cpu")
def init_model(model_name, model_path, args, config):
if model_name == 's2g_face':
generator = s2g_face(
args,
config,
)
elif model_name == 's2g_body_vq':
generator = s2g_body_vq(
args,
config,
)
elif model_name == 's2g_body_pixel':
generator = s2g_body_pixel(
args,
config,
)
elif model_name == 's2g_LS3DCG':
generator = LS3DCG(
args,
config,
)
else:
raise NotImplementedError
model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
if model_name == 'smplx_S2G':
generator.generator.load_state_dict(model_ckpt['generator']['generator'])
elif 'generator' in list(model_ckpt.keys()):
generator.load_state_dict(model_ckpt['generator'])
else:
model_ckpt = {'generator': model_ckpt}
generator.load_state_dict(model_ckpt)
return generator
def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
vertices_list = []
poses_list = []
expression = torch.zeros([1, 100])
for i in result_list:
vertices = []
poses = []
for j in range(i.shape[0]):
output = smplx_model(betas=betas,
expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression,
jaw_pose=i[j][0:3].unsqueeze_(dim=0),
leye_pose=i[j][3:6].unsqueeze_(dim=0),
reye_pose=i[j][6:9].unsqueeze_(dim=0),
global_orient=i[j][9:12].unsqueeze_(dim=0),
body_pose=i[j][12:75].unsqueeze_(dim=0),
left_hand_pose=i[j][75:120].unsqueeze_(dim=0),
right_hand_pose=i[j][120:165].unsqueeze_(dim=0),
return_verts=True)
vertices.append(output.vertices.detach().cpu().numpy().squeeze())
# pose = torch.cat([output.body_pose, output.left_hand_pose, output.right_hand_pose], dim=1)
pose = output.body_pose
poses.append(pose.detach().cpu())
vertices = np.asarray(vertices)
vertices_list.append(vertices)
poses = torch.cat(poses, dim=0)
poses_list.append(poses)
if require_pose:
return vertices_list, poses_list
else:
return vertices_list, None
global_orient = torch.tensor([3.0747, -0.0158, -0.0152])
parser = parse_args()
args = parser.parse_args()
args.gpu = device
RUN_MODE = "local"
if RUN_MODE != "local":
os.system("wget -P experiments/2022-10-15-smplx_S2G-face-3d/ "
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-15-smplx_S2G-face-3d/ckpt-99.pth")
os.system("wget -P experiments/2022-10-31-smplx_S2G-body-vq-3d/ "
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-31-smplx_S2G-body-vq-3d/ckpt-99.pth")
os.system("wget -P experiments/2022-11-02-smplx_S2G-body-pixel-3d/ "
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-11-02-smplx_S2G-body-pixel-3d/ckpt-99.pth")
os.system("wget -P visualise/smplx/ "
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/smplx/SMPLX_NEUTRAL.npz")
config = load_JsonConfig("config/body_pixel.json")
face_model_name = args.face_model_name
face_model_path = args.face_model_path
body_model_name = args.body_model_name
body_model_path = args.body_model_path
smplx_path = './visualise/'
os.environ['smplx_npz_path'] = config.smplx_npz_path
os.environ['extra_joint_path'] = config.extra_joint_path
os.environ['j14_regressor_path'] = config.j14_regressor_path
print('init model...')
g_body = init_model(body_model_name, body_model_path, args, config)
generator2 = None
g_face = init_model(face_model_name, face_model_path, args, config)
print('init smlpx model...')
dtype = torch.float64
model_params = dict(model_path=smplx_path,
model_type='smplx',
create_global_orient=True,
create_body_pose=True,
create_betas=True,
num_betas=300,
create_left_hand_pose=True,
create_right_hand_pose=True,
use_pca=False,
flat_hand_mean=False,
create_expression=True,
num_expression_coeffs=100,
num_pca_comps=12,
create_jaw_pose=True,
create_leye_pose=True,
create_reye_pose=True,
create_transl=False,
# gender='ne',
dtype=dtype, )
smplx_model = smpl.create(**model_params).to(device)
print('init rendertool...')
rendertool = RenderTool('visualise/video/' + config.Log.name)
def infer(wav, identity, pose):
betas = torch.zeros([1, 300], dtype=torch.float64).to(device)
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
am_sr = 16000
num_sample = args.num_sample
cur_wav_file = wav
if pose == 'Stand':
stand = True
face = False
elif pose == 'Sit':
stand = False
face = False
else:
stand = False
face = True
if face:
body_static = torch.zeros([1, 162], device=device)
body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1)
if identity == 'Oliver':
id = 0
elif identity == 'Chemistry':
id = 1
elif identity == 'Seth':
id = 2
elif identity == 'Conan':
id = 3
result_list = []
pred_face = g_face.infer_on_audio(cur_wav_file,
initial_pose=None,
norm_stats=None,
w_pre=False,
# id=id,
frame=None,
am=am,
am_sr=am_sr
)
pred_face = torch.tensor(pred_face).squeeze().to(device)
# pred_face = torch.zeros([gt.shape[0], 105])
if config.Data.pose.convert_to_6d:
pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
pred_jaw = matrix_to_axis_angle(rotation_6d_to_matrix(pred_jaw)).reshape(pred_face.shape[0], -1)
pred_face = pred_face[:, 6:]
else:
pred_jaw = pred_face[:, :3]
pred_face = pred_face[:, 3:]
id = torch.tensor([id], device=device)
for i in range(num_sample):
pred_res = g_body.infer_on_audio(cur_wav_file,
initial_pose=None,
norm_stats=None,
txgfile=None,
id=id,
var=None,
fps=30,
w_pre=False
)
pred = torch.tensor(pred_res).squeeze().to(device)
if pred.shape[0] < pred_face.shape[0]:
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
pred = torch.cat([pred, repeat_frame], dim=0)
else:
pred = pred[:pred_face.shape[0], :]
body_or_face = False
if pred.shape[1] < 275:
body_or_face = True
if config.Data.pose.convert_to_6d:
pred = pred.reshape(pred.shape[0], -1, 6)
pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred))
pred = pred.reshape(pred.shape[0], -1)
if config.Model.model_name == 's2g_LS3DCG':
pred = torch.cat([pred[:, :3], pred[:, 103:], pred[:, 3:103]], dim=-1)
else:
pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)
# pred[:, 9:12] = global_orient
pred = part2full(pred, stand)
if face:
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
# result_list[0] = poses2pred(result_list[0], stand)
# if gt_0 is None:
# gt_0 = gt
# pred = pred2poses(pred, gt_0)
# result_list[0] = poses2poses(result_list[0], gt_0)
result_list.append(pred)
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)
result_list = [res.to('cpu') for res in result_list]
dict = np.concatenate(result_list[:], axis=0)
rendertool._render_sequences(cur_wav_file, vertices_list, stand=stand, face=face, whole_body=args.whole_body)
return "result.mp4"
def main():
iface = gr.Interface(fn=infer, inputs=["audio",
gr.Radio(["Oliver", "Chemistry", "Seth", "Conan"]),
gr.Radio(["Stand", "Sit", "Only Face"]),
],
outputs="video",
examples=[[os.path.join(os.path.dirname(__file__), "demo_audio/style.wav"), "Oliver", "Sit"]])
iface.launch(debug=True)
if __name__ == '__main__':
main() |