Spaces:
Runtime error
Runtime error
Feliks Zaslavskiy
commited on
Commit
·
30b8f71
1
Parent(s):
0c1e501
small updates
Browse files- app.py +1 -1
- quick_evaluate.py +1 -1
- train.py +2 -2
app.py
CHANGED
@@ -14,7 +14,7 @@ from io import BytesIO
|
|
14 |
#model = AlbertModel.from_pretrained('albert-' + model_size + '-v2')
|
15 |
|
16 |
# For baseline 'sentence-transformers/paraphrase-albert-base-v2'
|
17 |
-
model_name = 'output/training_OnlineConstrativeLoss-2023-03-
|
18 |
|
19 |
similarity_threshold = 0.9
|
20 |
|
|
|
14 |
#model = AlbertModel.from_pretrained('albert-' + model_size + '-v2')
|
15 |
|
16 |
# For baseline 'sentence-transformers/paraphrase-albert-base-v2'
|
17 |
+
model_name = 'output/training_OnlineConstrativeLoss-2023-03-14_01-24-44'
|
18 |
|
19 |
similarity_threshold = 0.9
|
20 |
|
quick_evaluate.py
CHANGED
@@ -12,7 +12,7 @@ from sentence_transformers import SentenceTransformer
|
|
12 |
model_name = 'output/training_OnlineConstrativeLoss-2023-03-10_11-17-15'
|
13 |
model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_00-24-35'
|
14 |
model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19'
|
15 |
-
model_name='output/training_OnlineConstrativeLoss-2023-03-
|
16 |
model_sbert = SentenceTransformer(model_name)
|
17 |
|
18 |
def get_sbert_embedding(input_text):
|
|
|
12 |
model_name = 'output/training_OnlineConstrativeLoss-2023-03-10_11-17-15'
|
13 |
model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_00-24-35'
|
14 |
model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19'
|
15 |
+
model_name='output/training_OnlineConstrativeLoss-2023-03-14_01-24-44'
|
16 |
model_sbert = SentenceTransformer(model_name)
|
17 |
|
18 |
def get_sbert_embedding(input_text):
|
train.py
CHANGED
@@ -25,8 +25,8 @@ logger = logging.getLogger(__name__)
|
|
25 |
|
26 |
#As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
|
27 |
model = SentenceTransformer('sentence-transformers/paraphrase-albert-base-v2')
|
28 |
-
num_epochs =
|
29 |
-
train_batch_size =
|
30 |
|
31 |
#As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
|
32 |
distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
|
|
|
25 |
|
26 |
#As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
|
27 |
model = SentenceTransformer('sentence-transformers/paraphrase-albert-base-v2')
|
28 |
+
num_epochs = 12
|
29 |
+
train_batch_size = 14
|
30 |
|
31 |
#As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
|
32 |
distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
|