Feliks Zaslavskiy commited on
Commit
b3dff69
·
1 Parent(s): f248e14
Files changed (4) hide show
  1. eval.py +0 -1
  2. quick_evaluate.py +1 -0
  3. train.py +2 -2
  4. view_all_evals.py +2 -0
eval.py CHANGED
@@ -19,7 +19,6 @@ model_name = 'sentence-transformers/paraphrase-albert-base-v2'
19
  #86% so far
20
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-17_16-10-39'
21
 
22
-
23
  model_sbert = SentenceTransformer(model_name)
24
 
25
  dev_sentences1 = []
 
19
  #86% so far
20
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-17_16-10-39'
21
 
 
22
  model_sbert = SentenceTransformer(model_name)
23
 
24
  dev_sentences1 = []
quick_evaluate.py CHANGED
@@ -14,6 +14,7 @@ model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_00-24-35'
14
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19'
15
  model_name='output/training_OnlineConstrativeLoss-2023-03-17_16-10-39'
16
  model_name='output/training_OnlineConstrativeLoss-2023-03-17_23-15-52'
 
17
  model_sbert = SentenceTransformer(model_name)
18
 
19
 
 
14
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19'
15
  model_name='output/training_OnlineConstrativeLoss-2023-03-17_16-10-39'
16
  model_name='output/training_OnlineConstrativeLoss-2023-03-17_23-15-52'
17
+ #model_name='output/training_OnlineConstrativeLoss-2023-03-14_00-40-03'
18
  model_sbert = SentenceTransformer(model_name)
19
 
20
 
train.py CHANGED
@@ -24,8 +24,8 @@ logger = logging.getLogger(__name__)
24
 
25
 
26
  #As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
27
- model_name ='sentence-transformers/paraphrase-albert-base-v2'
28
  model_name = 'sentence-transformers/all-mpnet-base-v1'
 
29
  model = SentenceTransformer(model_name)
30
  num_epochs = 12
31
  # Smaller is generally better more accurate results.
@@ -35,7 +35,7 @@ train_batch_size = 10
35
  distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
36
 
37
  #Negative pairs should have a distance of at least 0.5
38
- margin = 0.5
39
 
40
  dataset_path = "data_set_training.csv"
41
  model_save_path = 'output/training_OnlineConstrativeLoss-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
 
24
 
25
 
26
  #As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
 
27
  model_name = 'sentence-transformers/all-mpnet-base-v1'
28
+ model_name ='sentence-transformers/paraphrase-albert-base-v2'
29
  model = SentenceTransformer(model_name)
30
  num_epochs = 12
31
  # Smaller is generally better more accurate results.
 
35
  distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
36
 
37
  #Negative pairs should have a distance of at least 0.5
38
+ margin = 0.4
39
 
40
  dataset_path = "data_set_training.csv"
41
  model_save_path = 'output/training_OnlineConstrativeLoss-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
view_all_evals.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # This will take a model and display the cosine similarity
2
+ # for all the dev set.