Update app.py
Browse files
app.py
CHANGED
@@ -50,6 +50,9 @@ def controlnet(i, prompt, control_task, seed_in, ddim_steps, scale):
|
|
50 |
eta = 0.0
|
51 |
low_threshold = 100
|
52 |
high_threshold = 200
|
|
|
|
|
|
|
53 |
|
54 |
if control_task == 'Canny':
|
55 |
result = model.process_canny(np_img, prompt, a_prompt, n_prompt, num_samples,
|
@@ -57,14 +60,32 @@ def controlnet(i, prompt, control_task, seed_in, ddim_steps, scale):
|
|
57 |
elif control_task == 'Depth':
|
58 |
result = model.process_depth(np_img, prompt, a_prompt, n_prompt, num_samples,
|
59 |
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
elif control_task == 'Pose':
|
61 |
result = model.process_pose(np_img, prompt, a_prompt, n_prompt, num_samples,
|
62 |
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
#print(result[0])
|
|
|
|
|
65 |
im = Image.fromarray(result[1])
|
66 |
im.save("your_file" + str(i) + ".jpeg")
|
67 |
-
return "your_file" + str(i) + ".jpeg"
|
68 |
|
69 |
|
70 |
def get_frames(video_in):
|
@@ -105,15 +126,24 @@ def get_frames(video_in):
|
|
105 |
return frames, fps
|
106 |
|
107 |
|
108 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
print("building video result")
|
110 |
clip = ImageSequenceClip(frames, fps=fps)
|
111 |
-
clip.write_videofile("
|
112 |
|
113 |
-
return
|
114 |
|
115 |
|
116 |
-
def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale):
|
117 |
print(f"""
|
118 |
βββββββββββββββ
|
119 |
{prompt}
|
@@ -129,7 +159,8 @@ def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale)
|
|
129 |
print("video is shorter than the cut value")
|
130 |
n_frame = len(frames_list)
|
131 |
|
132 |
-
# 2. prepare frames result
|
|
|
133 |
result_frames = []
|
134 |
print("set stop frames to: " + str(n_frame))
|
135 |
|
@@ -140,14 +171,27 @@ def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale)
|
|
140 |
|
141 |
# exporting the image
|
142 |
#rgb_im.save(f"result_img-{i}.jpg")
|
143 |
-
|
|
|
144 |
print("frame " + i + "/" + str(n_frame) + ": done;")
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
print("finished !")
|
148 |
|
149 |
-
return final_vid, gr.Group.update(visible=True)
|
150 |
-
|
|
|
|
|
|
|
151 |
|
152 |
title = """
|
153 |
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
@@ -199,6 +243,9 @@ with gr.Blocks(css='style.css') as demo:
|
|
199 |
with gr.Column():
|
200 |
video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid")
|
201 |
video_out = gr.Video(label="ControlNet video result", elem_id="video-output")
|
|
|
|
|
|
|
202 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
203 |
community_icon = gr.HTML(community_icon_html)
|
204 |
loading_icon = gr.HTML(loading_icon_html)
|
@@ -207,20 +254,27 @@ with gr.Blocks(css='style.css') as demo:
|
|
207 |
#status = gr.Textbox()
|
208 |
|
209 |
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
|
210 |
-
control_task = gr.Dropdown(label="Control Task", choices=["Canny", "Depth", "Pose"], value="Pose", multiselect=False)
|
211 |
with gr.Row():
|
212 |
-
|
|
|
|
|
|
|
213 |
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1)
|
214 |
-
|
|
|
|
|
215 |
minimum=1,
|
216 |
maximum=100,
|
217 |
value=20,
|
218 |
step=1)
|
219 |
-
|
220 |
minimum=0.1,
|
221 |
maximum=30.0,
|
222 |
value=9.0,
|
223 |
step=0.1)
|
|
|
|
|
|
|
224 |
|
225 |
submit_btn = gr.Button("Generate ControlNet video")
|
226 |
|
@@ -229,13 +283,14 @@ with gr.Blocks(css='style.css') as demo:
|
|
229 |
work with longer videos / skip the queue:
|
230 |
""", elem_id="duplicate-container")
|
231 |
|
232 |
-
inputs = [prompt,video_inp,control_task, seed_inp, trim_in, ddim_steps, scale]
|
233 |
-
outputs = [video_out, share_group]
|
234 |
#outputs = [status]
|
235 |
|
236 |
|
237 |
gr.HTML(article)
|
238 |
-
|
|
|
239 |
submit_btn.click(infer, inputs, outputs)
|
240 |
share_button.click(None, [], [], _js=share_js)
|
241 |
|
|
|
50 |
eta = 0.0
|
51 |
low_threshold = 100
|
52 |
high_threshold = 200
|
53 |
+
value_threshold = 0.1
|
54 |
+
distance_threshold = 0.1
|
55 |
+
bg_threshold = 0.4
|
56 |
|
57 |
if control_task == 'Canny':
|
58 |
result = model.process_canny(np_img, prompt, a_prompt, n_prompt, num_samples,
|
|
|
60 |
elif control_task == 'Depth':
|
61 |
result = model.process_depth(np_img, prompt, a_prompt, n_prompt, num_samples,
|
62 |
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
63 |
+
elif control_task == 'Hed':
|
64 |
+
result = model.process_hed(np_img, prompt, a_prompt, n_prompt, num_samples,
|
65 |
+
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
66 |
+
elif control_task == 'Hough':
|
67 |
+
result = model.process_hough(np_img, prompt, a_prompt, n_prompt, num_samples,
|
68 |
+
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, value_threshold,
|
69 |
+
distance_threshold)
|
70 |
+
elif control_task == 'Normal':
|
71 |
+
result = model.process_normal(np_img, prompt, a_prompt, n_prompt, num_samples,
|
72 |
+
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, bg_threshold)
|
73 |
elif control_task == 'Pose':
|
74 |
result = model.process_pose(np_img, prompt, a_prompt, n_prompt, num_samples,
|
75 |
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
76 |
+
elif control_task == 'Scribble':
|
77 |
+
result = model.process_scribble(np_img, prompt, a_prompt, n_prompt, num_samples,
|
78 |
+
image_resolution, ddim_steps, scale, seed_in, eta)
|
79 |
+
elif control_task == 'Seg':
|
80 |
+
result = model.process_seg(np_img, prompt, a_prompt, n_prompt, num_samples,
|
81 |
+
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
|
82 |
|
83 |
#print(result[0])
|
84 |
+
processor_im = Image.fromarray(result[0])
|
85 |
+
processor_im.save("process_" + control_task + "_" + str(i) + ".jpeg")
|
86 |
im = Image.fromarray(result[1])
|
87 |
im.save("your_file" + str(i) + ".jpeg")
|
88 |
+
return "your_file" + str(i) + ".jpeg", "process_" + control_task + "_" + str(i) + ".jpeg"
|
89 |
|
90 |
|
91 |
def get_frames(video_in):
|
|
|
126 |
return frames, fps
|
127 |
|
128 |
|
129 |
+
def convert(gif):
|
130 |
+
if gif != None:
|
131 |
+
clip = VideoFileClip(gif.name)
|
132 |
+
clip.write_videofile("my_gif_video.mp4")
|
133 |
+
return "my_gif_video.mp4"
|
134 |
+
else:
|
135 |
+
pass
|
136 |
+
|
137 |
+
|
138 |
+
def create_video(frames, fps, type):
|
139 |
print("building video result")
|
140 |
clip = ImageSequenceClip(frames, fps=fps)
|
141 |
+
clip.write_videofile(type + "_result.mp4", fps=fps)
|
142 |
|
143 |
+
return type + "_result.mp4"
|
144 |
|
145 |
|
146 |
+
def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale, gif_import):
|
147 |
print(f"""
|
148 |
βββββββββββββββ
|
149 |
{prompt}
|
|
|
159 |
print("video is shorter than the cut value")
|
160 |
n_frame = len(frames_list)
|
161 |
|
162 |
+
# 2. prepare frames result arrays
|
163 |
+
processor_result_frames = []
|
164 |
result_frames = []
|
165 |
print("set stop frames to: " + str(n_frame))
|
166 |
|
|
|
171 |
|
172 |
# exporting the image
|
173 |
#rgb_im.save(f"result_img-{i}.jpg")
|
174 |
+
processor_result_frames.append(controlnet_img[1])
|
175 |
+
result_frames.append(controlnet_img[0])
|
176 |
print("frame " + i + "/" + str(n_frame) + ": done;")
|
177 |
|
178 |
+
processor_vid = create_video(processor_result_frames, fps, "processor")
|
179 |
+
final_vid = create_video(result_frames, fps, "final")
|
180 |
+
|
181 |
+
files = [processor_vid, final_vid]
|
182 |
+
if gif_import != None:
|
183 |
+
final_gif = VideoFileClip(final_vid)
|
184 |
+
final_gif.write_gif("final_result.gif")
|
185 |
+
final_gif = "final_result.gif"
|
186 |
+
|
187 |
+
files.append(final_gif)
|
188 |
print("finished !")
|
189 |
|
190 |
+
return final_vid, gr.Accordion.update(visible=True), gr.Video.update(value=processor_vid, visible=True), gr.File.update(value=files, visible=True), gr.Group.update(visible=True)
|
191 |
+
|
192 |
+
|
193 |
+
def clean():
|
194 |
+
return gr.Accordion.update(visible=False),gr.Video.update(value=None, visible=False), gr.Video.update(value=None), gr.File.update(value=None, visible=False), gr.Group.update(visible=False)
|
195 |
|
196 |
title = """
|
197 |
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
|
|
243 |
with gr.Column():
|
244 |
video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid")
|
245 |
video_out = gr.Video(label="ControlNet video result", elem_id="video-output")
|
246 |
+
with gr.Accordion("Detailed results", visible=False) as detailed_result:
|
247 |
+
prep_video_out = gr.Video(label="Preprocessor video result", visible=False, elem_id="prep-video-output")
|
248 |
+
files = gr.File(label="Files can be downloaded ;)", visible=False)
|
249 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
250 |
community_icon = gr.HTML(community_icon_html)
|
251 |
loading_icon = gr.HTML(loading_icon_html)
|
|
|
254 |
#status = gr.Textbox()
|
255 |
|
256 |
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
|
|
|
257 |
with gr.Row():
|
258 |
+
control_task = gr.Dropdown(label="Control Task", choices=["Canny", "Depth", "Hed", "Hough", "Normal", "Pose", "Scribble", "Seg"], value="Pose", multiselect=False, elem_id="controltask-in")
|
259 |
+
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
|
260 |
+
with gr.Row():
|
261 |
+
|
262 |
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1)
|
263 |
+
with gr.Accordion("Advanced Options", open=False):
|
264 |
+
|
265 |
+
ddim_steps = gr.Slider(label='Steps',
|
266 |
minimum=1,
|
267 |
maximum=100,
|
268 |
value=20,
|
269 |
step=1)
|
270 |
+
scale = gr.Slider(label='Guidance Scale',
|
271 |
minimum=0.1,
|
272 |
maximum=30.0,
|
273 |
value=9.0,
|
274 |
step=0.1)
|
275 |
+
|
276 |
+
gif_import = gr.File(label="import a GIF instead", file_types=['.gif'])
|
277 |
+
gif_import.change(convert, gif_import, video_inp, queue=False)
|
278 |
|
279 |
submit_btn = gr.Button("Generate ControlNet video")
|
280 |
|
|
|
283 |
work with longer videos / skip the queue:
|
284 |
""", elem_id="duplicate-container")
|
285 |
|
286 |
+
inputs = [prompt,video_inp,control_task, seed_inp, trim_in, ddim_steps, scale, gif_import]
|
287 |
+
outputs = [video_out, detailed_result, prep_video_out, files, share_group]
|
288 |
#outputs = [status]
|
289 |
|
290 |
|
291 |
gr.HTML(article)
|
292 |
+
|
293 |
+
submit_btn.click(clean, inputs=[], outputs=[detailed_result, prep_video_out, video_out, files, share_group], queue=False)
|
294 |
submit_btn.click(infer, inputs, outputs)
|
295 |
share_button.click(None, [], [], _js=share_js)
|
296 |
|