# This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707 # The original license file is LICENSE.ControlNet in this repo. from __future__ import annotations import pathlib import random import shlex import subprocess import sys import cv2 import einops import numpy as np import torch from huggingface_hub import hf_hub_url from pytorch_lightning import seed_everything sys.path.append('ControlNet') import config from annotator.canny import apply_canny from annotator.hed import apply_hed, nms from annotator.midas import apply_midas from annotator.mlsd import apply_mlsd from annotator.openpose import apply_openpose from annotator.uniformer import apply_uniformer from annotator.util import HWC3, resize_image from cldm.model import create_model, load_state_dict from ldm.models.diffusion.ddim import DDIMSampler from share import * MODEL_NAMES = { 'canny': 'control_canny-fp16.safetensors', 'hough': 'control_mlsd-fp16.safetensors', 'hed': 'control_hed-fp16.safetensors', 'scribble': 'control_scribble-fp16.safetensors', 'pose': 'control_openpose-fp16.safetensors', 'seg': 'control_seg-fp16.safetensors', 'depth': 'control_depth-fp16.safetensors', 'normal': 'control_normal-fp16.safetensors', } MODEL_REPO = 'webui/ControlNet-modules-safetensors' DEFAULT_BASE_MODEL_REPO = 'runwayml/stable-diffusion-v1-5' DEFAULT_BASE_MODEL_FILENAME = 'v1-5-pruned-emaonly.safetensors' DEFAULT_BASE_MODEL_URL = 'https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors' class Model: def __init__(self, model_config_path: str = 'ControlNet/models/cldm_v15.yaml', model_dir: str = 'models'): self.device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') self.model = create_model(model_config_path).to(self.device) self.ddim_sampler = DDIMSampler(self.model) self.task_name = '' self.base_model_url = '' self.model_dir = pathlib.Path(model_dir) self.model_dir.mkdir(exist_ok=True, parents=True) self.download_models() self.set_base_model(DEFAULT_BASE_MODEL_REPO, DEFAULT_BASE_MODEL_FILENAME) def set_base_model(self, model_id: str, filename: str) -> str: if not model_id or not filename: return self.base_model_url base_model_url = hf_hub_url(model_id, filename) if base_model_url != self.base_model_url: self.load_base_model(base_model_url) self.base_model_url = base_model_url return self.base_model_url def download_base_model(self, model_url: str) -> pathlib.Path: self.model_dir.mkdir(exist_ok=True, parents=True) model_name = model_url.split('/')[-1] out_path = self.model_dir / model_name if not out_path.exists(): subprocess.run(shlex.split(f'wget {model_url} -O {out_path}')) return out_path def load_base_model(self, model_url: str) -> None: model_path = self.download_base_model(model_url) self.model.load_state_dict(load_state_dict(model_path, location=self.device.type), strict=False) def load_weight(self, task_name: str) -> None: if task_name == self.task_name: return weight_path = self.get_weight_path(task_name) self.model.control_model.load_state_dict( load_state_dict(weight_path, location=self.device.type)) self.task_name = task_name def get_weight_path(self, task_name: str) -> str: if 'scribble' in task_name: task_name = 'scribble' return f'{self.model_dir}/{MODEL_NAMES[task_name]}' def download_models(self) -> None: self.model_dir.mkdir(exist_ok=True, parents=True) for name in MODEL_NAMES.values(): out_path = self.model_dir / name if out_path.exists(): continue model_url = hf_hub_url(MODEL_REPO, name) subprocess.run(shlex.split(f'wget {model_url} -O {out_path}')) @torch.inference_mode() def process_canny(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold): self.load_weight('canny') img = resize_image(HWC3(input_image), image_resolution) H, W, C = img.shape detected_map = apply_canny(img, low_threshold, high_threshold) detected_map = HWC3(detected_map) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results @torch.inference_mode() def process_hough(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta, value_threshold, distance_threshold): self.load_weight('hough') input_image = HWC3(input_image) detected_map = apply_mlsd(resize_image(input_image, detect_resolution), value_threshold, distance_threshold) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [ 255 - cv2.dilate(detected_map, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) ] + results @torch.inference_mode() def process_hed(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta): self.load_weight('hed') input_image = HWC3(input_image) detected_map = apply_hed(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results @torch.inference_mode() def process_scribble(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta): self.load_weight('scribble') img = resize_image(HWC3(input_image), image_resolution) H, W, C = img.shape detected_map = np.zeros_like(img, dtype=np.uint8) detected_map[np.min(img, axis=2) < 127] = 255 control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results @torch.inference_mode() def process_scribble_interactive(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta): self.load_weight('scribble') img = resize_image(HWC3(input_image['mask'][:, :, 0]), image_resolution) H, W, C = img.shape detected_map = np.zeros_like(img, dtype=np.uint8) detected_map[np.min(img, axis=2) > 127] = 255 control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results @torch.inference_mode() def process_fake_scribble(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta): self.load_weight('scribble') input_image = HWC3(input_image) detected_map = apply_hed(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results @torch.inference_mode() def process_pose(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta): self.load_weight('pose') input_image = HWC3(input_image) detected_map, _ = apply_openpose( resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results @torch.inference_mode() def process_seg(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta): self.load_weight('seg') input_image = HWC3(input_image) detected_map = apply_uniformer( resize_image(input_image, detect_resolution)) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results @torch.inference_mode() def process_depth(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta): self.load_weight('depth') input_image = HWC3(input_image) detected_map, _ = apply_midas( resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results @torch.inference_mode() def process_normal(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta, bg_threshold): self.load_weight('normal') input_image = HWC3(input_image) _, detected_map = apply_midas(resize_image(input_image, detect_resolution), bg_th=bg_threshold) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = torch.from_numpy( detected_map[:, :, ::-1].copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = { 'c_concat': [control], 'c_crossattn': [ self.model.get_learned_conditioning( [prompt + ', ' + a_prompt] * num_samples) ] } un_cond = { 'c_concat': [control], 'c_crossattn': [self.model.get_learned_conditioning([n_prompt] * num_samples)] } shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) samples, intermediates = self.ddim_sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = ( einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results