File size: 18,205 Bytes
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14e29c
a644739
43d6e06
0616d16
 
 
 
 
 
 
529fb74
 
 
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a1fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a1fc4
 
 
03a856a
24ebd50
 
 
 
 
 
 
 
 
 
ed7df29
7f9233d
ed7df29
24ebd50
ed7df29
24ebd50
0238950
24ebd50
03a856a
 
 
 
40df699
03a856a
53244a3
 
af90035
03a856a
40df699
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d04b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a856a
 
 
dbd7242
 
6426e9a
 
 
 
 
 
 
03a856a
 
 
 
32d04b2
 
 
 
 
 
 
 
 
 
 
 
 
 
529fb74
dbd7242
529fb74
 
dbd7242
529fb74
 
dbd7242
529fb74
 
dbd7242
529fb74
 
dbd7242
529fb74
 
dbd7242
529fb74
 
 
dbd7242
03a856a
 
dbd7242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529fb74
 
 
 
 
 
 
 
dbd7242
03a856a
a644739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a856a
a644739
 
 
 
f0478d8
 
a644739
03a856a
 
 
 
 
 
32d04b2
 
 
d52e082
32d04b2
 
 
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd7242
 
03a856a
 
 
 
 
 
 
 
 
dbd7242
0616d16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''

import os
import random
from datetime import datetime
from pathlib import Path

import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
import argparse

import gradio as gr
from gradio_client import Client, handle_file
from pydub import AudioSegment
import huggingface_hub 

huggingface_hub.snapshot_download(
    repo_id='BadToBest/EchoMimic',
    local_dir='./pretrained_weights',
    local_dir_use_symlinks=False,
)

is_shared_ui = True if "fffiloni/EchoMimic" in os.environ['SPACE_ID'] else False
available_property = False if is_shared_ui else True
advanced_settings_label = "Advanced Configuration (only for duplicated spaces)" if is_shared_ui else "Advanced Configuration"

default_values = {
    "width": 512,
    "height": 512,
    "length": 1200,
    "seed": 420,
    "facemask_dilation_ratio": 0.1,
    "facecrop_dilation_ratio": 0.5,
    "context_frames": 12,
    "context_overlap": 3,
    "cfg": 2.5,
    "steps": 30,
    "sample_rate": 16000,
    "fps": 24,
    "device": "cuda"
}

ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
    print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
    print("add ffmpeg to path")
    os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"


config_path = "./configs/prompts/animation.yaml"
config = OmegaConf.load(config_path)
if config.weight_dtype == "fp16":
    weight_dtype = torch.float16
else:
    weight_dtype = torch.float32

device = "cuda"
if not torch.cuda.is_available():
    device = "cpu"

inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)

############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)

## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
    config.pretrained_base_model_path,
    subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))

## denoising net init
if os.path.exists(config.motion_module_path):
    ### stage1 + stage2
    denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        config.motion_module_path,
        subfolder="unet",
        unet_additional_kwargs=infer_config.unet_additional_kwargs,
    ).to(dtype=weight_dtype, device=device)
else:
    ### only stage1
    denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        "",
        subfolder="unet",
        unet_additional_kwargs={
            "use_motion_module": False,
            "unet_use_temporal_attention": False,
            "cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
        }
    ).to(dtype=weight_dtype, device=device)

denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)

## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda")
face_locator.load_state_dict(torch.load(config.face_locator_path))

## load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)

## load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)

############# model_init finished #############

sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)

pipe = Audio2VideoPipeline(
    vae=vae,
    reference_unet=reference_unet,
    denoising_unet=denoising_unet,
    audio_guider=audio_processor,
    face_locator=face_locator,
    scheduler=scheduler,
).to("cuda", dtype=weight_dtype)

def ensure_png(image_path):
    # Load the image with Pillow
    with Image.open(image_path) as img:
        # Check if the image is already a PNG
        if img.format != "PNG":
            # Convert and save as PNG
            png_path = os.path.splitext(image_path)[0] + ".png"
            img.save(png_path, format="PNG")
            print(f"Image converted to PNG and saved as {png_path}")
            return png_path
        else:
            print("Image is already a PNG.")
            return image_path

def select_face(det_bboxes, probs):
    ## max face from faces that the prob is above 0.8
    ## box: xyxy
    if det_bboxes is None or probs is None:
        return None
    filtered_bboxes = []
    for bbox_i in range(len(det_bboxes)):
        if probs[bbox_i] > 0.8:
            filtered_bboxes.append(det_bboxes[bbox_i])
    if len(filtered_bboxes) == 0:
        return None
    sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
    return sorted_bboxes[0]

def process_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):

    if seed is not None and seed > -1:
        generator = torch.manual_seed(seed)
    else:
        generator = torch.manual_seed(random.randint(100, 1000000))

    uploaded_img = ensure_png(uploaded_img)

    #### face mask prepare
    face_img = cv2.imread(uploaded_img)
    
    # Get the original dimensions
    original_height, original_width = face_img.shape[:2]
    
    # Set the new width to 512 pixels
    new_width = 512
    
    # Calculate the new height with the same aspect ratio
    new_height = int(original_height * (new_width / original_width))
    
    # Ensure both width and height are divisible by 8
    new_width = (new_width // 8) * 8  # Force target width to be divisible by 8
    new_height = (new_height // 8) * 8   # Floor the height to the nearest multiple of 8
    

    # Resize the image to the calculated dimensions
    face_img = cv2.resize(face_img, (new_width, new_height))
    
    face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
    det_bboxes, probs = face_detector.detect(face_img)
    select_bbox = select_face(det_bboxes, probs)
    if select_bbox is None:
        print("SELECT_BBOX IS NONE")
        face_mask[:, :] = 255
        face_img = cv2.resize(face_img, (width, height))
        face_mask = cv2.resize(face_mask, (width, height))
        raise gr.Error("Face Detector could not detect a face in your image. Try with a 512 squared image where the face is clearly visible.")
    else:
        print("SELECT_BBOX IS NOT NONE")
        xyxy = select_bbox[:4]
        xyxy = np.round(xyxy).astype('int')
        rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
        r_pad = int((re - rb) * facemask_dilation_ratio)
        c_pad = int((ce - cb) * facemask_dilation_ratio)
        face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
        
        #### face crop
        r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
        c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
        crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
        face_img = crop_and_pad(face_img, crop_rect)
        face_mask = crop_and_pad(face_mask, crop_rect)
        face_img = cv2.resize(face_img, (width, height))
        face_mask = cv2.resize(face_mask, (width, height))

    ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
    face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
    
    video = pipe(
        ref_image_pil,
        uploaded_audio,
        face_mask_tensor,
        width,
        height,
        length,
        steps,
        cfg,
        generator=generator,
        audio_sample_rate=sample_rate,
        context_frames=context_frames,
        fps=fps,
        context_overlap=context_overlap
    ).videos

    save_dir = Path("output/tmp")
    save_dir.mkdir(exist_ok=True, parents=True)
    output_video_path = save_dir / "output_video.mp4"
    save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)

    video_clip = VideoFileClip(str(output_video_path))
    audio_clip = AudioFileClip(uploaded_audio)
    final_output_path = save_dir / "output_video_with_audio.mp4"
    video_clip = video_clip.set_audio(audio_clip)
    video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")

    return final_output_path

def get_maskGCT_TTS(prompt_audio_maskGCT, audio_to_clone):
    try:
        client = Client("amphion/maskgct")
    except:
        raise gr.Error(f"amphion/maskgct space's api might not be ready, please wait, or upload an audio instead.")
    
    result = client.predict(
        prompt_wav = handle_file(audio_to_clone),
        target_text = prompt_audio_maskGCT,
        target_len=-1,
		n_timesteps=25,
		api_name="/predict"
    )
    print(result) 
    return result, gr.update(value=result, visible=True)
  
with gr.Blocks() as demo:
    gr.Markdown('# EchoMimic')
    gr.Markdown('## Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning')
    gr.Markdown('Inference time: from ~7mins/240frames to ~50s/240frames on V100 GPU')
    gr.HTML("""
    <div style="display:flex;column-gap:4px;">
        <a href='https://badtobest.github.io/echomimic.html'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
        <a href='https://huggingface.co/BadToBest/EchoMimic'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
        <a href='https://arxiv.org/abs/2407.08136'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
    </div>
    """)
    with gr.Row():
        with gr.Column():
            uploaded_img = gr.Image(type="filepath", label="Reference Image")
            uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
            preprocess_audio_file = gr.File(visible=False)
            with gr.Accordion(label="Voice cloning with MaskGCT", open=False):
                prompt_audio_maskGCT = gr.Textbox(
                    label = "Text to synthetize",
                    lines = 2,
                    max_lines = 2,
                    elem_id = "text-synth-maskGCT"
                )
                audio_to_clone_maskGCT = gr.Audio(
                    label = "Voice to clone",
                    type = "filepath",
                    elem_id = "audio-clone-elm-maskGCT"
                )
                gen_maskGCT_voice_btn = gr.Button("Generate voice clone (optional)")
            with gr.Accordion(label=advanced_settings_label, open=False):
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"], interactive=available_property)
                    height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"], interactive=available_property)
                with gr.Row():
                    length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"], interactive=available_property)
                    seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"], interactive=available_property)
                with gr.Row():
                    facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"], interactive=available_property)
                    facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"], interactive=available_property)
                with gr.Row():
                    context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"], interactive=available_property)
                    context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"], interactive=available_property)
                with gr.Row():
                    cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"], interactive=available_property)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"], interactive=available_property)
                with gr.Row():
                    sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"], interactive=available_property)
                    fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"], interactive=available_property)
                    device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"], interactive=available_property)
            generate_button = gr.Button("Generate Video")
        with gr.Column():
            output_video = gr.Video()
            gr.Examples(
                label = "Portrait examples",
                examples = [
                    ['assets/test_imgs/a.png'],
                    ['assets/test_imgs/b.png'],
                    ['assets/test_imgs/c.png'],
                    ['assets/test_imgs/d.png'],
                    ['assets/test_imgs/e.png']
                ],
                inputs = [uploaded_img]
            )
            gr.Examples(
                label = "Audio examples",
                examples = [
                    ['assets/test_audios/chunnuanhuakai.wav'],
                    ['assets/test_audios/chunwang.wav'],
                    ['assets/test_audios/echomimic_en_girl.wav'],
                    ['assets/test_audios/echomimic_en.wav'],
                    ['assets/test_audios/echomimic_girl.wav'],
                    ['assets/test_audios/echomimic.wav'],
                    ['assets/test_audios/jane.wav'],
                    ['assets/test_audios/mei.wav'],
                    ['assets/test_audios/walden.wav'],
                    ['assets/test_audios/yun.wav'],
                ],
                inputs = [uploaded_audio]
            )
            gr.HTML("""
            <div style="display:flex;column-gap:4px;">
                <a href="https://huggingface.co/spaces/fffiloni/EchoMimic?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space">
                </a>
                <a href="https://huggingface.co/fffiloni">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl-dark.svg" alt="Follow me on HF">
                </a>
            </div>
            """)

    def trim_audio(file_path, output_path, max_duration=10):
        # Load the audio file
        audio = AudioSegment.from_wav(file_path)
    
        # Convert max duration to milliseconds
        max_duration_ms = max_duration * 1000
    
        # Trim the audio if it's longer than max_duration
        if len(audio) > max_duration_ms:
            audio = audio[:max_duration_ms]
    
        # Export the trimmed audio
        audio.export(output_path, format="wav")
        print(f"Audio trimmed and saved as {output_path}")
        return output_path

    def generate_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device, progress=gr.Progress(track_tqdm=True)):
        if is_shared_ui:
            gr.Info("Trimming audio to max 10 seconds. Duplicate the space for unlimited audio length.")
            uploaded_audio = trim_audio(uploaded_audio, "trimmed_audio.wav")

        
            
        final_output_path = process_video(
            uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
        )        
        output_video= final_output_path
        return final_output_path

    gen_maskGCT_voice_btn.click(
        fn = get_maskGCT_TTS,
        inputs = [prompt_audio_maskGCT, audio_to_clone_maskGCT],
        outputs = [uploaded_audio, preprocess_audio_file],
        queue = False,
        show_api = False
    )

    generate_button.click(
        generate_video,
        inputs=[
            uploaded_img,
            uploaded_audio,
            width,
            height,
            length,
            seed,
            facemask_dilation_ratio,
            facecrop_dilation_ratio,
            context_frames,
            context_overlap,
            cfg,
            steps,
            sample_rate,
            fps,
            device
        ],
        outputs=output_video,
        show_api=False
    )
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=7680, help='Server port')
args = parser.parse_args()

# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)

if __name__ == '__main__':
    demo.queue(max_size=3).launch(show_api=False, show_error=True)
    #demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)