Spaces:
Sleeping
Sleeping
File size: 1,591 Bytes
03a856a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import torch
import numpy as np
def get_alpha(alphas_cumprod, timestep):
timestep_lt_zero_mask = torch.lt(timestep, 0).to(alphas_cumprod.dtype)
normal_alpha = alphas_cumprod[torch.clip(timestep, 0)]
one_alpha = torch.ones_like(normal_alpha).to(normal_alpha.dtype).to(normal_alpha.dtype)
return normal_alpha * (1 - timestep_lt_zero_mask) + one_alpha * timestep_lt_zero_mask
def psuedo_velocity_wrt_noisy_and_timestep(noisy_images, noisy_images_pre, alphas_cumprod, timestep, timestep_prev):
alpha_prod_t = get_alpha(alphas_cumprod, timestep).view(-1, 1, 1, 1, 1).detach()
beta_prod_t = 1 - alpha_prod_t
alpha_prod_t_prev = get_alpha(alphas_cumprod, timestep_prev).view(-1, 1, 1, 1, 1).detach()
beta_prod_t_prev = 1 - alpha_prod_t_prev
a_s = (alpha_prod_t_prev ** (0.5)).to(noisy_images.dtype)
a_t = (alpha_prod_t ** (0.5)).to(noisy_images.dtype)
b_s = (beta_prod_t_prev ** (0.5)).to(noisy_images.dtype)
b_t = (beta_prod_t ** (0.5)).to(noisy_images.dtype)
psuedo_velocity = (noisy_images_pre - (
a_s * a_t + b_s * b_t
) * noisy_images) / (
b_s * a_t - a_s * b_t
)
return psuedo_velocity
def origin_by_velocity_and_sample(velocity, noisy_images, alphas_cumprod, timestep):
alpha_prod_t = get_alpha(alphas_cumprod, timestep).view(-1, 1, 1, 1, 1).detach()
beta_prod_t = 1 - alpha_prod_t
a_t = (alpha_prod_t ** (0.5)).to(noisy_images.dtype)
b_t = (beta_prod_t ** (0.5)).to(noisy_images.dtype)
pred_original_sample = a_t * noisy_images - b_t * velocity
return pred_original_sample
|