Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
-
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
6 |
-
|
7 |
-
model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b")
|
8 |
-
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
|
9 |
-
|
10 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
-
model.to(device)
|
12 |
|
13 |
import os
|
14 |
hf_token = os.environ.get('HF_TOKEN')
|
15 |
from gradio_client import Client
|
16 |
client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
raw_image = Image.open(image_input).convert('RGB')
|
21 |
|
22 |
-
|
23 |
-
inputs = processor(images=raw_image, text=prompt, return_tensors="pt").to(device)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
min_length=1,
|
31 |
-
top_p=0.9,
|
32 |
-
repetition_penalty=1.5,
|
33 |
-
length_penalty=1.0,
|
34 |
-
temperature=1,
|
35 |
)
|
36 |
-
|
37 |
-
print(generated_text)
|
38 |
-
|
39 |
|
40 |
|
41 |
llama_q = f"""
|
42 |
I'll give you a simple image caption, from i want you to provide a story that would fit well with the image:
|
43 |
-
'{
|
44 |
|
45 |
"""
|
46 |
|
@@ -49,12 +30,9 @@ def infer(image_input):
|
|
49 |
api_name="/predict"
|
50 |
)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
print(f"Llama2 result: {result}")
|
56 |
|
57 |
-
return
|
58 |
|
59 |
css="""
|
60 |
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
|
@@ -67,9 +45,6 @@ with gr.Blocks(css=css) as demo:
|
|
67 |
"""
|
68 |
# Image to Story
|
69 |
Upload an image, get a story !
|
70 |
-
<br/>
|
71 |
-
<br/>
|
72 |
-
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co/spaces/fffiloni/SplitTrack2MusicGen?duplicate=true) for longer audio, more control and no queue.</p>
|
73 |
"""
|
74 |
)
|
75 |
image_in = gr.Image(label="Image input", type="filepath")
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import os
|
4 |
hf_token = os.environ.get('HF_TOKEN')
|
5 |
from gradio_client import Client
|
6 |
client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token)
|
7 |
|
8 |
+
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")
|
9 |
+
|
|
|
10 |
|
11 |
+
def infer(image_input):
|
|
|
12 |
|
13 |
+
clipi_result = clipi_client.predict(
|
14 |
+
image_input, # str (filepath or URL to image) in 'parameter_3' Image component
|
15 |
+
"best", # str in 'Select mode' Radio component
|
16 |
+
6, # int | float (numeric value between 2 and 24) in 'best mode max flavors' Slider component
|
17 |
+
api_name="/clipi2"
|
|
|
|
|
|
|
|
|
|
|
18 |
)
|
19 |
+
print(clipi_result)
|
|
|
|
|
20 |
|
21 |
|
22 |
llama_q = f"""
|
23 |
I'll give you a simple image caption, from i want you to provide a story that would fit well with the image:
|
24 |
+
'{clipi_result}'
|
25 |
|
26 |
"""
|
27 |
|
|
|
30 |
api_name="/predict"
|
31 |
)
|
32 |
|
|
|
|
|
|
|
33 |
print(f"Llama2 result: {result}")
|
34 |
|
35 |
+
return clipi_result, result
|
36 |
|
37 |
css="""
|
38 |
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
|
|
|
45 |
"""
|
46 |
# Image to Story
|
47 |
Upload an image, get a story !
|
|
|
|
|
|
|
48 |
"""
|
49 |
)
|
50 |
image_in = gr.Image(label="Image input", type="filepath")
|