|
import torch |
|
|
|
import os |
|
import json |
|
|
|
from dataclasses import dataclass |
|
from einops import rearrange, repeat |
|
from typing import Any, Dict, Optional, Tuple |
|
from diffusers.models import Transformer2DModel |
|
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate |
|
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid, ImagePositionalEmbeddings, CaptionProjection |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from opensora.models.diffusion.utils.pos_embed import get_1d_sincos_pos_embed |
|
from .modules import PatchEmbed, BasicTransformerBlock, BasicTransformerBlock_, AdaLayerNormSingle, Transformer3DModelOutput |
|
|
|
|
|
class Latte(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
""" |
|
A 2D Transformer model for image-like data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). |
|
This is fixed during training since it is used to learn a number of position embeddings. |
|
num_vector_embeds (`int`, *optional*): |
|
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): |
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is |
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are |
|
added to the hidden states. |
|
|
|
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlocks` attention should contain a bias parameter. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
patch_size_t: int = 1, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "layer_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
attention_type: str = "default", |
|
caption_channels: int = None, |
|
video_length: int = 16, |
|
attention_mode: str = 'flash' |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.video_length = video_length |
|
|
|
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv |
|
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear |
|
|
|
|
|
|
|
self.is_input_continuous = (in_channels is not None) and (patch_size is None) |
|
self.is_input_vectorized = num_vector_embeds is not None |
|
self.is_input_patches = in_channels is not None and patch_size is not None |
|
|
|
if norm_type == "layer_norm" and num_embeds_ada_norm is not None: |
|
deprecation_message = ( |
|
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" |
|
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config." |
|
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" |
|
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" |
|
" would be very nice if you could open a Pull request for the `transformer/config.json` file" |
|
) |
|
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) |
|
norm_type = "ada_norm" |
|
|
|
if self.is_input_continuous and self.is_input_vectorized: |
|
raise ValueError( |
|
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" |
|
" sure that either `in_channels` or `num_vector_embeds` is None." |
|
) |
|
elif self.is_input_vectorized and self.is_input_patches: |
|
raise ValueError( |
|
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make" |
|
" sure that either `num_vector_embeds` or `num_patches` is None." |
|
) |
|
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches: |
|
raise ValueError( |
|
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:" |
|
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None." |
|
) |
|
|
|
|
|
if self.is_input_continuous: |
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
if use_linear_projection: |
|
self.proj_in = linear_cls(in_channels, inner_dim) |
|
else: |
|
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" |
|
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed" |
|
|
|
self.height = sample_size[0] |
|
self.width = sample_size[1] |
|
self.num_vector_embeds = num_vector_embeds |
|
self.num_latent_pixels = self.height * self.width |
|
|
|
self.latent_image_embedding = ImagePositionalEmbeddings( |
|
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width |
|
) |
|
elif self.is_input_patches: |
|
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size" |
|
|
|
self.height = sample_size[0] |
|
self.width = sample_size[1] |
|
|
|
self.patch_size = patch_size |
|
interpolation_scale = self.config.sample_size[0] // 64 |
|
interpolation_scale = max(interpolation_scale, 1) |
|
self.pos_embed = PatchEmbed( |
|
height=sample_size[0], |
|
width=sample_size[1], |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock_( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=None, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=False, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
attention_type=attention_type, |
|
attention_mode=attention_mode, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.temporal_transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock_( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=None, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=False, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
attention_type=attention_type, |
|
attention_mode=attention_mode, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
if self.is_input_continuous: |
|
|
|
if use_linear_projection: |
|
self.proj_out = linear_cls(inner_dim, in_channels) |
|
else: |
|
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
self.norm_out = nn.LayerNorm(inner_dim) |
|
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) |
|
elif self.is_input_patches and norm_type != "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) |
|
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
elif self.is_input_patches and norm_type == "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim ** 0.5) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
|
|
|
|
self.adaln_single = None |
|
self.use_additional_conditions = False |
|
if norm_type == "ada_norm_single": |
|
|
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) |
|
|
|
self.caption_projection = None |
|
if caption_channels is not None: |
|
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
|
|
|
interpolation_scale = self.config.video_length // 5 |
|
interpolation_scale = max(interpolation_scale, 1) |
|
temp_pos_embed = get_1d_sincos_pos_embed(inner_dim, video_length, interpolation_scale=interpolation_scale) |
|
self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: Optional[torch.LongTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
use_image_num: int = 0, |
|
enable_temporal_attentions: bool = True, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`Transformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
input_batch_size, c, frame, h, w = hidden_states.shape |
|
frame = frame - use_image_num |
|
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w').contiguous() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
|
|
|
|
if self.is_input_patches: |
|
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size |
|
num_patches = height * width |
|
|
|
hidden_states = self.pos_embed(hidden_states.to(self.dtype)) |
|
|
|
if self.adaln_single is not None: |
|
if self.use_additional_conditions and added_cond_kwargs is None: |
|
raise ValueError( |
|
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." |
|
) |
|
|
|
batch_size = input_batch_size |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
timestep_spatial = repeat(timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous() |
|
timestep_temp = repeat(timestep, 'b d -> (b p) d', p=num_patches).contiguous() |
|
|
|
for i, (spatial_block, temp_block) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)): |
|
|
|
if self.training and self.gradient_checkpointing: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
spatial_block, |
|
hidden_states, |
|
attention_mask, |
|
None, |
|
None, |
|
timestep_spatial, |
|
cross_attention_kwargs, |
|
class_labels, |
|
use_reentrant=False, |
|
) |
|
|
|
if enable_temporal_attentions: |
|
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous() |
|
|
|
if use_image_num != 0: |
|
hidden_states_video = hidden_states[:, :frame, ...] |
|
hidden_states_image = hidden_states[:, frame:, ...] |
|
|
|
if i == 0: |
|
hidden_states_video = hidden_states_video + self.temp_pos_embed |
|
|
|
hidden_states_video = torch.utils.checkpoint.checkpoint( |
|
temp_block, |
|
hidden_states_video, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
use_reentrant=False, |
|
) |
|
|
|
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) |
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
|
|
else: |
|
if i == 0: |
|
hidden_states = hidden_states + self.temp_pos_embed |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
temp_block, |
|
hidden_states, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
use_reentrant=False, |
|
) |
|
|
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
else: |
|
hidden_states = spatial_block( |
|
hidden_states, |
|
attention_mask, |
|
None, |
|
None, |
|
timestep_spatial, |
|
cross_attention_kwargs, |
|
class_labels, |
|
) |
|
|
|
if enable_temporal_attentions: |
|
|
|
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous() |
|
|
|
if use_image_num != 0 and self.training: |
|
hidden_states_video = hidden_states[:, :frame, ...] |
|
hidden_states_image = hidden_states[:, frame:, ...] |
|
|
|
hidden_states_video = temp_block( |
|
hidden_states_video, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
) |
|
|
|
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) |
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
|
|
else: |
|
if i == 0: |
|
hidden_states = hidden_states + self.temp_pos_embed |
|
|
|
hidden_states = temp_block( |
|
hidden_states, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
) |
|
|
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
|
|
if self.is_input_patches: |
|
if self.config.norm_type != "ada_norm_single": |
|
conditioning = self.transformer_blocks[0].norm1.emb( |
|
timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] |
|
hidden_states = self.proj_out_2(hidden_states) |
|
elif self.config.norm_type == "ada_norm_single": |
|
embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous() |
|
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
if self.adaln_single is None: |
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) |
|
) |
|
output = rearrange(output, '(b f) c h w -> b c f h w', b=input_batch_size).contiguous() |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer3DModelOutput(sample=output) |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, **kwargs): |
|
if subfolder is not None: |
|
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) |
|
|
|
config_file = os.path.join(pretrained_model_path, 'config.json') |
|
if not os.path.isfile(config_file): |
|
raise RuntimeError(f"{config_file} does not exist") |
|
with open(config_file, "r") as f: |
|
config = json.load(f) |
|
|
|
model = cls.from_config(config, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return model |
|
|
|
def forward_with_cfg(self, x, timestep, class_labels=None, cfg_scale=7.0, attention_mask=None): |
|
""" |
|
Forward pass of Latte, but also batches the unconditional forward pass for classifier-free guidance. |
|
""" |
|
|
|
half = x[: len(x) // 2] |
|
combined = torch.cat([half, half], dim=0) |
|
model_out = self.forward(combined, timestep, class_labels=class_labels, attention_mask=attention_mask) |
|
|
|
|
|
|
|
eps, rest = model_out[:, :, :self.in_channels], model_out[:, :, self.in_channels:] |
|
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) |
|
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) |
|
eps = torch.cat([half_eps, half_eps], dim=0) |
|
return torch.cat([eps, rest], dim=2) |
|
|
|
class LatteT2V(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
""" |
|
A 2D Transformer model for image-like data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). |
|
This is fixed during training since it is used to learn a number of position embeddings. |
|
num_vector_embeds (`int`, *optional*): |
|
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): |
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is |
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are |
|
added to the hidden states. |
|
|
|
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlocks` attention should contain a bias parameter. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
patch_size_t: int = 1, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "layer_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
attention_type: str = "default", |
|
caption_channels: int = None, |
|
video_length: int = 16, |
|
attention_mode: str = 'flash' |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.video_length = video_length |
|
|
|
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv |
|
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear |
|
|
|
|
|
|
|
self.is_input_continuous = (in_channels is not None) and (patch_size is None) |
|
self.is_input_vectorized = num_vector_embeds is not None |
|
self.is_input_patches = in_channels is not None and patch_size is not None |
|
|
|
if norm_type == "layer_norm" and num_embeds_ada_norm is not None: |
|
deprecation_message = ( |
|
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" |
|
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config." |
|
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" |
|
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" |
|
" would be very nice if you could open a Pull request for the `transformer/config.json` file" |
|
) |
|
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) |
|
norm_type = "ada_norm" |
|
|
|
if self.is_input_continuous and self.is_input_vectorized: |
|
raise ValueError( |
|
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" |
|
" sure that either `in_channels` or `num_vector_embeds` is None." |
|
) |
|
elif self.is_input_vectorized and self.is_input_patches: |
|
raise ValueError( |
|
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make" |
|
" sure that either `num_vector_embeds` or `num_patches` is None." |
|
) |
|
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches: |
|
raise ValueError( |
|
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:" |
|
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None." |
|
) |
|
|
|
|
|
if self.is_input_continuous: |
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
if use_linear_projection: |
|
self.proj_in = linear_cls(in_channels, inner_dim) |
|
else: |
|
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" |
|
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed" |
|
|
|
self.height = sample_size[0] |
|
self.width = sample_size[1] |
|
self.num_vector_embeds = num_vector_embeds |
|
self.num_latent_pixels = self.height * self.width |
|
|
|
self.latent_image_embedding = ImagePositionalEmbeddings( |
|
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width |
|
) |
|
elif self.is_input_patches: |
|
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size" |
|
|
|
self.height = sample_size[0] |
|
self.width = sample_size[1] |
|
|
|
self.patch_size = patch_size |
|
interpolation_scale = self.config.sample_size[0] // 64 |
|
interpolation_scale = max(interpolation_scale, 1) |
|
self.pos_embed = PatchEmbed( |
|
height=sample_size[0], |
|
width=sample_size[1], |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=double_self_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
attention_type=attention_type, |
|
attention_mode=attention_mode |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.temporal_transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock_( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=None, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=False, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
attention_type=attention_type, |
|
attention_mode=attention_mode |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
if self.is_input_continuous: |
|
|
|
if use_linear_projection: |
|
self.proj_out = linear_cls(inner_dim, in_channels) |
|
else: |
|
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
self.norm_out = nn.LayerNorm(inner_dim) |
|
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) |
|
elif self.is_input_patches and norm_type != "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) |
|
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
elif self.is_input_patches and norm_type == "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim ** 0.5) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
|
|
|
|
self.adaln_single = None |
|
self.use_additional_conditions = False |
|
if norm_type == "ada_norm_single": |
|
|
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) |
|
|
|
self.caption_projection = None |
|
if caption_channels is not None: |
|
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
|
interpolation_scale = self.config.video_length // 5 |
|
interpolation_scale = max(interpolation_scale, 1) |
|
temp_pos_embed = get_1d_sincos_pos_embed(inner_dim, video_length, interpolation_scale=interpolation_scale) |
|
self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: Optional[torch.LongTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
use_image_num: int = 0, |
|
enable_temporal_attentions: bool = True, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`Transformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
input_batch_size, c, frame, h, w = hidden_states.shape |
|
|
|
|
|
|
|
|
|
frame = frame - use_image_num |
|
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w').contiguous() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
attention_mask = attention_mask.to(self.dtype) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
encoder_attention_mask = repeat(encoder_attention_mask, 'b 1 l -> (b f) 1 l', f=frame).contiguous() |
|
encoder_attention_mask = encoder_attention_mask.to(self.dtype) |
|
elif encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
encoder_attention_mask_video = encoder_attention_mask[:, :1, ...] |
|
encoder_attention_mask_video = repeat(encoder_attention_mask_video, 'b 1 l -> b (1 f) l', |
|
f=frame).contiguous() |
|
encoder_attention_mask_image = encoder_attention_mask[:, 1:, ...] |
|
encoder_attention_mask = torch.cat([encoder_attention_mask_video, encoder_attention_mask_image], dim=1) |
|
encoder_attention_mask = rearrange(encoder_attention_mask, 'b n l -> (b n) l').contiguous().unsqueeze(1) |
|
encoder_attention_mask = encoder_attention_mask.to(self.dtype) |
|
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
|
|
|
|
if self.is_input_patches: |
|
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size |
|
num_patches = height * width |
|
|
|
hidden_states = self.pos_embed(hidden_states.to(self.dtype)) |
|
|
|
if self.adaln_single is not None: |
|
if self.use_additional_conditions and added_cond_kwargs is None: |
|
raise ValueError( |
|
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." |
|
) |
|
|
|
batch_size = input_batch_size |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
|
|
if self.caption_projection is not None: |
|
batch_size = hidden_states.shape[0] |
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states.to(self.dtype)) |
|
|
|
if use_image_num != 0 and self.training: |
|
encoder_hidden_states_video = encoder_hidden_states[:, :1, ...] |
|
encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b 1 t d -> b (1 f) t d', f=frame).contiguous() |
|
encoder_hidden_states_image = encoder_hidden_states[:, 1:, ...] |
|
encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1) |
|
encoder_hidden_states_spatial = rearrange(encoder_hidden_states, 'b f t d -> (b f) t d').contiguous() |
|
else: |
|
encoder_hidden_states_spatial = repeat(encoder_hidden_states, 'b t d -> (b f) t d', f=frame).contiguous() |
|
|
|
|
|
timestep_spatial = repeat(timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous() |
|
timestep_temp = repeat(timestep, 'b d -> (b p) d', p=num_patches).contiguous() |
|
|
|
for i, (spatial_block, temp_block) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)): |
|
|
|
if self.training and self.gradient_checkpointing: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
spatial_block, |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states_spatial, |
|
encoder_attention_mask, |
|
timestep_spatial, |
|
cross_attention_kwargs, |
|
class_labels, |
|
use_reentrant=False, |
|
) |
|
|
|
if enable_temporal_attentions: |
|
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous() |
|
|
|
if use_image_num != 0: |
|
hidden_states_video = hidden_states[:, :frame, ...] |
|
hidden_states_image = hidden_states[:, frame:, ...] |
|
|
|
if i == 0: |
|
hidden_states_video = hidden_states_video + self.temp_pos_embed |
|
|
|
hidden_states_video = torch.utils.checkpoint.checkpoint( |
|
temp_block, |
|
hidden_states_video, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
use_reentrant=False, |
|
) |
|
|
|
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) |
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
|
|
else: |
|
if i == 0: |
|
hidden_states = hidden_states + self.temp_pos_embed |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
temp_block, |
|
hidden_states, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
use_reentrant=False, |
|
) |
|
|
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
else: |
|
hidden_states = spatial_block( |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states_spatial, |
|
encoder_attention_mask, |
|
timestep_spatial, |
|
cross_attention_kwargs, |
|
class_labels, |
|
) |
|
|
|
if enable_temporal_attentions: |
|
|
|
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous() |
|
|
|
if use_image_num != 0 and self.training: |
|
hidden_states_video = hidden_states[:, :frame, ...] |
|
hidden_states_image = hidden_states[:, frame:, ...] |
|
|
|
hidden_states_video = temp_block( |
|
hidden_states_video, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
) |
|
|
|
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) |
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
|
|
else: |
|
if i == 0: |
|
hidden_states = hidden_states + self.temp_pos_embed |
|
|
|
hidden_states = temp_block( |
|
hidden_states, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
cross_attention_kwargs, |
|
class_labels, |
|
) |
|
|
|
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', |
|
b=input_batch_size).contiguous() |
|
|
|
if self.is_input_patches: |
|
if self.config.norm_type != "ada_norm_single": |
|
conditioning = self.transformer_blocks[0].norm1.emb( |
|
timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] |
|
hidden_states = self.proj_out_2(hidden_states) |
|
elif self.config.norm_type == "ada_norm_single": |
|
embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous() |
|
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
if self.adaln_single is None: |
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) |
|
) |
|
output = rearrange(output, '(b f) c h w -> b c f h w', b=input_batch_size).contiguous() |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer3DModelOutput(sample=output) |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, **kwargs): |
|
if subfolder is not None: |
|
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) |
|
|
|
config_file = os.path.join(pretrained_model_path, 'config.json') |
|
if not os.path.isfile(config_file): |
|
raise RuntimeError(f"{config_file} does not exist") |
|
with open(config_file, "r") as f: |
|
config = json.load(f) |
|
|
|
model = cls.from_config(config, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return model |
|
|
|
|
|
def Latte_XL_122(**kwargs): |
|
return Latte(num_layers=28, attention_head_dim=72, num_attention_heads=16, patch_size_t=1, patch_size=2, norm_type="ada_norm_single", **kwargs) |
|
|
|
def LatteClass_XL_122(**kwargs): |
|
return Latte(num_layers=28, attention_head_dim=72, num_attention_heads=16, patch_size_t=1, patch_size=2, norm_type="ada_norm_zero", **kwargs) |
|
|
|
def LatteT2V_XL_122(**kwargs): |
|
return LatteT2V(num_layers=28, attention_head_dim=72, num_attention_heads=16, patch_size_t=1, patch_size=2, |
|
norm_type="ada_norm_single", caption_channels=4096, cross_attention_dim=1152, **kwargs) |
|
|
|
Latte_models = { |
|
"Latte-XL/122": Latte_XL_122, |
|
"LatteClass-XL/122": LatteClass_XL_122, |
|
"LatteT2V-XL/122": LatteT2V_XL_122, |
|
} |
|
|
|
if __name__ == '__main__': |
|
a = json.load(open('./config.json', 'r')) |
|
model = LatteT2V.from_config(a) |
|
ckpt = torch.load(r"E:\下载\t2v.pt", map_location='cpu')['model'] |
|
model.load_state_dict(ckpt) |
|
print(model) |