Spaces:
Sleeping
Sleeping
display model loading status separately
Browse files
app.py
CHANGED
@@ -58,8 +58,8 @@ def start_over(gallery_state, loaded_model_setup):
|
|
58 |
return gallery_state, None, None, gr.update(visible=False), loaded_model_setup
|
59 |
|
60 |
def setup_model(prompt, model, seed, num_iterations, learning_rate, hps_w, imgrw_w, pcks_w, clip_w, progress=gr.Progress(track_tqdm=True)):
|
61 |
-
if prompt is None:
|
62 |
-
raise gr.Error("You forgot
|
63 |
|
64 |
"""Clear CUDA memory before starting the training."""
|
65 |
torch.cuda.empty_cache() # Free up cached memory
|
@@ -86,10 +86,14 @@ def setup_model(prompt, model, seed, num_iterations, learning_rate, hps_w, imgrw
|
|
86 |
args.enable_multi_apply= True
|
87 |
args.multi_step_model = "flux"
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def generate_image(setup_args, num_iterations):
|
95 |
torch.cuda.empty_cache() # Free up cached memory
|
@@ -198,7 +202,19 @@ def show_gallery_output(gallery_state):
|
|
198 |
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
|
199 |
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
loaded_model_setup = gr.State()
|
203 |
gallery_state = gr.State()
|
204 |
with gr.Column():
|
@@ -221,7 +237,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
221 |
with gr.Row():
|
222 |
chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sd-turbo")
|
223 |
seed = gr.Number(label="seed", value=0)
|
224 |
-
model_status = gr.Textbox(label="model status", visible=False)
|
225 |
|
226 |
with gr.Row():
|
227 |
n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Number of Iterations")
|
@@ -249,6 +264,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
249 |
)
|
250 |
|
251 |
with gr.Column():
|
|
|
252 |
output_image = gr.Image(type="filepath", label="Best Generated Image")
|
253 |
status = gr.Textbox(label="Status")
|
254 |
iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)
|
@@ -260,7 +276,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
260 |
).then(
|
261 |
fn = setup_model,
|
262 |
inputs = [prompt, chosen_model, seed, n_iter, hps_w, imgrw_w, pcks_w, clip_w, learning_rate],
|
263 |
-
outputs = [
|
264 |
).then(
|
265 |
fn = generate_image,
|
266 |
inputs = [loaded_model_setup, n_iter],
|
|
|
58 |
return gallery_state, None, None, gr.update(visible=False), loaded_model_setup
|
59 |
|
60 |
def setup_model(prompt, model, seed, num_iterations, learning_rate, hps_w, imgrw_w, pcks_w, clip_w, progress=gr.Progress(track_tqdm=True)):
|
61 |
+
if prompt is None or prompt == "":
|
62 |
+
raise gr.Error("You forgot to provide a prompt !")
|
63 |
|
64 |
"""Clear CUDA memory before starting the training."""
|
65 |
torch.cuda.empty_cache() # Free up cached memory
|
|
|
86 |
args.enable_multi_apply= True
|
87 |
args.multi_step_model = "flux"
|
88 |
|
89 |
+
try:
|
90 |
+
args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings = setup(args)
|
91 |
+
loaded_setup = [args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings]
|
92 |
+
return f"{model} model loaded succesfully !", loaded_setup
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Unexpected Error: {e}")
|
96 |
+
return f"Something went wrong with {model} loading", None
|
97 |
|
98 |
def generate_image(setup_args, num_iterations):
|
99 |
torch.cuda.empty_cache() # Free up cached memory
|
|
|
202 |
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
|
203 |
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."
|
204 |
|
205 |
+
css="""
|
206 |
+
#model-status-id{
|
207 |
+
height: 126px;
|
208 |
+
}
|
209 |
+
#model-status-id .progress-text{
|
210 |
+
font-size: 10px!important;
|
211 |
+
}
|
212 |
+
#model-status-id .progress-level-inner{
|
213 |
+
font-size: 8px!important;
|
214 |
+
}
|
215 |
+
"""
|
216 |
+
|
217 |
+
with gr.Blocks(css=css, analytics_enabled=False) as demo:
|
218 |
loaded_model_setup = gr.State()
|
219 |
gallery_state = gr.State()
|
220 |
with gr.Column():
|
|
|
237 |
with gr.Row():
|
238 |
chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sd-turbo")
|
239 |
seed = gr.Number(label="seed", value=0)
|
|
|
240 |
|
241 |
with gr.Row():
|
242 |
n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Number of Iterations")
|
|
|
264 |
)
|
265 |
|
266 |
with gr.Column():
|
267 |
+
model_status = gr.Textbox(label="model status", visible=True, elem_id="model-status-id")
|
268 |
output_image = gr.Image(type="filepath", label="Best Generated Image")
|
269 |
status = gr.Textbox(label="Status")
|
270 |
iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)
|
|
|
276 |
).then(
|
277 |
fn = setup_model,
|
278 |
inputs = [prompt, chosen_model, seed, n_iter, hps_w, imgrw_w, pcks_w, clip_w, learning_rate],
|
279 |
+
outputs = [model_status, loaded_model_setup] # Load the new setup into the state
|
280 |
).then(
|
281 |
fn = generate_image,
|
282 |
inputs = [loaded_model_setup, n_iter],
|