Spaces:
Sleeping
Sleeping
clean outputs directories
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from main import main
|
3 |
from arguments import parse_args
|
4 |
import os
|
|
|
5 |
import glob
|
6 |
|
7 |
def list_iter_images(save_dir):
|
@@ -21,6 +22,27 @@ def list_iter_images(save_dir):
|
|
21 |
|
22 |
return image_paths
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def generate_image(prompt, model, num_iterations, learning_rate, progress=gr.Progress(track_tqdm=True)):
|
25 |
# Set up arguments
|
26 |
args = parse_args()
|
@@ -32,6 +54,21 @@ def generate_image(prompt, model, num_iterations, learning_rate, progress=gr.Pro
|
|
32 |
args.cache_dir = "./HF_model_cache"
|
33 |
args.save_dir = "./outputs"
|
34 |
args.save_all_images = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
try:
|
37 |
# Run the main function with progress tracking
|
@@ -39,20 +76,6 @@ def generate_image(prompt, model, num_iterations, learning_rate, progress=gr.Pro
|
|
39 |
progress(step / num_iterations, f"Iteration {step}/{num_iterations}")
|
40 |
|
41 |
best_image, total_init_rewards, total_best_rewards = main(args, progress_callback)
|
42 |
-
|
43 |
-
settings = (
|
44 |
-
f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
|
45 |
-
f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
|
46 |
-
f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
|
47 |
-
f"_reg{args.reg_weight if args.enable_reg else '0'}"
|
48 |
-
f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
|
49 |
-
f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
|
50 |
-
f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
|
51 |
-
f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
|
52 |
-
f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
|
53 |
-
)
|
54 |
-
|
55 |
-
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt}"
|
56 |
|
57 |
# Return the path to the generated image
|
58 |
image_path = f"{save_dir}/best_image.png"
|
|
|
2 |
from main import main
|
3 |
from arguments import parse_args
|
4 |
import os
|
5 |
+
import shutil
|
6 |
import glob
|
7 |
|
8 |
def list_iter_images(save_dir):
|
|
|
22 |
|
23 |
return image_paths
|
24 |
|
25 |
+
def clean_dir(save_dir):
|
26 |
+
# Check if the directory exists
|
27 |
+
if os.path.exists(save_dir):
|
28 |
+
# Check if the directory contains any files
|
29 |
+
if len(os.listdir(save_dir)) > 0:
|
30 |
+
# If it contains files, delete all files in the directory
|
31 |
+
for filename in os.listdir(save_dir):
|
32 |
+
file_path = os.path.join(save_dir, filename)
|
33 |
+
try:
|
34 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
35 |
+
os.unlink(file_path) # Remove file or symbolic link
|
36 |
+
elif os.path.isdir(file_path):
|
37 |
+
shutil.rmtree(file_path) # Remove directory and its contents
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Failed to delete {file_path}. Reason: {e}")
|
40 |
+
print(f"All files in {save_dir} have been deleted.")
|
41 |
+
else:
|
42 |
+
print(f"{save_dir} exists but is empty.")
|
43 |
+
else:
|
44 |
+
print(f"{save_dir} does not exist.")
|
45 |
+
|
46 |
def generate_image(prompt, model, num_iterations, learning_rate, progress=gr.Progress(track_tqdm=True)):
|
47 |
# Set up arguments
|
48 |
args = parse_args()
|
|
|
54 |
args.cache_dir = "./HF_model_cache"
|
55 |
args.save_dir = "./outputs"
|
56 |
args.save_all_images = True
|
57 |
+
|
58 |
+
settings = (
|
59 |
+
f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
|
60 |
+
f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
|
61 |
+
f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
|
62 |
+
f"_reg{args.reg_weight if args.enable_reg else '0'}"
|
63 |
+
f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
|
64 |
+
f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
|
65 |
+
f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
|
66 |
+
f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
|
67 |
+
f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
|
68 |
+
)
|
69 |
+
|
70 |
+
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt}"
|
71 |
+
clean_dir(save_dir)
|
72 |
|
73 |
try:
|
74 |
# Run the main function with progress tracking
|
|
|
76 |
progress(step / num_iterations, f"Iteration {step}/{num_iterations}")
|
77 |
|
78 |
best_image, total_init_rewards, total_best_rewards = main(args, progress_callback)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Return the path to the generated image
|
81 |
image_path = f"{save_dir}/best_image.png"
|