Spaces:
Paused
Paused
# -------------------------------------------------------- | |
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beats | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Based on fairseq code bases | |
# https://github.com/pytorch/fairseq | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn as nn | |
from torch.nn import LayerNorm | |
import torchaudio.compliance.kaldi as ta_kaldi | |
from beats.backbone import ( | |
TransformerEncoder, | |
) | |
from beats.quantizer import ( | |
NormEMAVectorQuantizer, | |
) | |
import logging | |
from typing import Optional | |
logger = logging.getLogger(__name__) | |
class TokenizersConfig: | |
def __init__(self, cfg=None): | |
self.input_patch_size: int = -1 # path size of patch embedding | |
self.embed_dim: int = 512 # patch embedding dimension | |
self.conv_bias: bool = False # include bias in conv encoder | |
self.encoder_layers: int = 12 # num encoder layers in the transformer | |
self.encoder_embed_dim: int = 768 # encoder embedding dimension | |
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN | |
self.encoder_attention_heads: int = 12 # num encoder attention heads | |
self.activation_fn: str = "gelu" # activation function to use | |
self.layer_norm_first: bool = False # apply layernorm first in the transformer | |
self.deep_norm: bool = False # apply deep_norm first in the transformer | |
# dropouts | |
self.dropout: float = 0.1 # dropout probability for the transformer | |
self.attention_dropout: float = 0.1 # dropout probability for attention weights | |
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN | |
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer | |
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr) | |
# positional embeddings | |
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings | |
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding | |
# relative position embedding | |
self.relative_position_embedding: bool = False # apply relative position embedding | |
self.num_buckets: int = 320 # number of buckets for relative position embedding | |
self.max_distance: int = 1280 # maximum distance for relative position embedding | |
self.gru_rel_pos: bool = False # apply gated relative position embedding | |
# quantizer | |
self.quant_n: int = 1024 # codebook number in quantizer | |
self.quant_dim: int = 256 # codebook dimension in quantizer | |
if cfg is not None: | |
self.update(cfg) | |
def update(self, cfg: dict): | |
self.__dict__.update(cfg) | |
class Tokenizers(nn.Module): | |
def __init__( | |
self, | |
cfg: TokenizersConfig, | |
) -> None: | |
super().__init__() | |
logger.info(f"Tokenizers Config: {cfg.__dict__}") | |
self.cfg = cfg | |
self.embed = cfg.embed_dim | |
self.post_extract_proj = ( | |
nn.Linear(self.embed, cfg.encoder_embed_dim) | |
if self.embed != cfg.encoder_embed_dim | |
else None | |
) | |
self.input_patch_size = cfg.input_patch_size | |
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size, | |
bias=cfg.conv_bias) | |
self.dropout_input = nn.Dropout(cfg.dropout_input) | |
assert not cfg.deep_norm or not cfg.layer_norm_first | |
self.encoder = TransformerEncoder(cfg) | |
self.layer_norm = LayerNorm(self.embed) | |
self.quantize = NormEMAVectorQuantizer( | |
n_embed=cfg.quant_n, embedding_dim=cfg.quant_dim, beta=1.0, kmeans_init=True, decay=0.99, | |
) | |
self.quant_n = cfg.quant_n | |
self.quantize_layer = nn.Sequential( | |
nn.Linear(cfg.encoder_embed_dim, cfg.encoder_embed_dim), | |
nn.Tanh(), | |
nn.Linear(cfg.encoder_embed_dim, cfg.quant_dim) # for quantize | |
) | |
def forward_padding_mask( | |
self, | |
features: torch.Tensor, | |
padding_mask: torch.Tensor, | |
) -> torch.Tensor: | |
extra = padding_mask.size(1) % features.size(1) | |
if extra > 0: | |
padding_mask = padding_mask[:, :-extra] | |
padding_mask = padding_mask.view( | |
padding_mask.size(0), features.size(1), -1 | |
) | |
padding_mask = padding_mask.all(-1) | |
return padding_mask | |
def preprocess( | |
self, | |
source: torch.Tensor, | |
fbank_mean: float = 15.41663, | |
fbank_std: float = 6.55582, | |
) -> torch.Tensor: | |
fbanks = [] | |
for waveform in source: | |
waveform = waveform.unsqueeze(0) * 2 ** 15 | |
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10) | |
fbanks.append(fbank) | |
fbank = torch.stack(fbanks, dim=0) | |
fbank = (fbank - fbank_mean) / (2 * fbank_std) | |
return fbank | |
def extract_labels( | |
self, | |
source: torch.Tensor, | |
padding_mask: Optional[torch.Tensor] = None, | |
fbank_mean: float = 15.41663, | |
fbank_std: float = 6.55582, | |
): | |
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std) | |
if padding_mask is not None: | |
padding_mask = self.forward_padding_mask(fbank, padding_mask) | |
fbank = fbank.unsqueeze(1) | |
features = self.patch_embedding(fbank) | |
features = features.reshape(features.shape[0], features.shape[1], -1) | |
features = features.transpose(1, 2) | |
features = self.layer_norm(features) | |
if padding_mask is not None: | |
padding_mask = self.forward_padding_mask(features, padding_mask) | |
if self.post_extract_proj is not None: | |
features = self.post_extract_proj(features) | |
x = self.dropout_input(features) | |
x, layer_results = self.encoder( | |
x, | |
padding_mask=padding_mask, | |
) | |
quantize_input = self.quantize_layer(x) | |
quantize_feature, embed_loss, embed_ind = self.quantize(quantize_input) | |
return embed_ind | |