Spaces:
Sleeping
Sleeping
File size: 17,764 Bytes
c4a81c0 ba0d504 c4a81c0 6c0d568 e65f811 a4f8a15 6c0d568 1eecd17 eee8ee3 6c0d568 eee8ee3 0479145 6c0d568 fbb77f2 fd0d56e eee8ee3 e61c4ed eee8ee3 0479145 c49015b 0479145 c49015b 0479145 68c6b17 0479145 68c6b17 0479145 4d3675e eee8ee3 3b79011 eee8ee3 3b79011 935805a eee8ee3 935805a 3b79011 935805a 3b79011 935805a eee8ee3 935805a eee8ee3 aafe80a 0479145 6c0d568 0479145 6c0d568 0479145 6c0d568 0479145 6c0d568 0479145 6c0d568 0c327c7 6c0d568 0c327c7 6c0d568 0c327c7 e8b186a 6c0d568 e8b186a 6c0d568 0c327c7 6c0d568 5e4c885 0c327c7 5e4c885 0c327c7 6c0d568 f2010da 0479145 a4918b7 95134d2 a4918b7 b308d40 a4918b7 95134d2 a4918b7 b308d40 a4918b7 95134d2 a4918b7 b308d40 a4918b7 95134d2 f2010da 95134d2 a4918b7 68c6b17 f2010da 0479145 f2010da 0479145 68c6b17 0479145 c4a81c0 6c0d568 0479145 6d8faa9 0479145 6c0d568 0479145 f2010da 0479145 b048b56 f2010da 6c0d568 3df73f7 f2010da 28dd534 f82120a 62402d2 28dd534 0479145 6c0d568 0479145 28dd534 ab48935 0479145 6c0d568 0479145 6c0d568 22a3ce6 b048b56 ab48935 fbb77f2 28dd534 e2e6da8 28dd534 fbb77f2 fd0d56e fac93d0 fbb77f2 469fa31 22a3ce6 469fa31 b647399 4d67d4b 6c0d568 fac93d0 6c0d568 eee8ee3 f2010da 68c6b17 e61c4ed 6c0d568 0479145 4d3675e 0479145 4d3675e eee8ee3 abdc509 eee8ee3 b177fca 610729e ae8c232 abdc509 610729e 0479145 610729e 935805a ae8c232 935805a 28dd534 935805a 610729e 51c3be9 ae8c232 b177fca 610729e e6603c1 e2e6da8 28dd534 ae8c232 28dd534 ae8c232 28dd534 0479145 eee8ee3 51c3be9 0479145 f2010da 0c327c7 0479145 68c6b17 e8b186a 51c3be9 eee8ee3 0c327c7 e8b186a 0c327c7 eee8ee3 6c0d568 68c6b17 f2010da 4d67d4b f2010da fd0d56e b647399 6c0d568 e8b186a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import subprocess
# Define the command to be executed
command = ["python", "setup.py", "build_ext", "--inplace"]
# Execute the command
result = subprocess.run(command, capture_output=True, text=True)
# Print the output and error (if any)
print("Output:\n", result.stdout)
print("Errors:\n", result.stderr)
# Check if the command was successful
if result.returncode == 0:
print("Command executed successfully.")
else:
print("Command failed with return code:", result.returncode)
import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor
from moviepy.editor import ImageSequenceClip
def get_video_fps(video_path):
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the FPS of the video
fps = cap.get(cv2.CAP_PROP_FPS)
return fps
def preprocess_image(image):
return image, gr.State([]), gr.State([]), image, gr.State()
def preprocess_video_in(video_path):
# Generate a unique ID based on the current date and time
unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
output_dir = f'frames_{unique_id}'
# Create the output directory
os.makedirs(output_dir, exist_ok=True)
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the frames per second (FPS) of the video
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate the number of frames to process (10 seconds of video)
max_frames = int(fps * 10)
frame_number = 0
first_frame = None
while True:
ret, frame = cap.read()
if not ret or frame_number >= max_frames:
break
# Format the frame filename as '00000.jpg'
frame_filename = os.path.join(output_dir, f'{frame_number:05d}.jpg')
# Save the frame as a JPEG file
cv2.imwrite(frame_filename, frame)
# Store the first frame
if frame_number == 0:
first_frame = frame_filename
frame_number += 1
# Release the video capture object
cap.release()
# scan all the JPEG frame names in this directory
scanned_frames = [
p for p in os.listdir(output_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
# 'image' is the first frame extracted from video_in
return first_frame, gr.State([]), gr.State([]), first_frame, first_frame, output_dir, scanned_frames, None, None, gr.update(open=False)
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.value.append(evt.index)
print(f"TRACKING POINT: {tracking_points.value}")
if point_type == "include":
trackings_input_label.value.append(1)
elif point_type == "exclude":
trackings_input_label.value.append(0)
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
# Open the image and get its dimensions
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points.value):
if trackings_input_label.value[index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
combined_images = [] # List to store filenames of images with masks overlaid
mask_images = [] # List to store filenames of separate mask images
for i, (mask, score) in enumerate(zip(masks, scores)):
# ---- Original Image with Mask Overlaid ----
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders
"""
if point_coords is not None:
assert input_labels is not None
show_points(point_coords, input_labels, plt.gca())
"""
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
# Save the figure as a JPG file
combined_filename = f"combined_image_{i+1}.jpg"
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
combined_images.append(combined_filename)
plt.close() # Close the figure to free up memory
# ---- Separate Mask Image (White Mask on Black Background) ----
# Create a black image
mask_image = np.zeros_like(image, dtype=np.uint8)
# The mask is a binary array where the masked area is 1, else 0.
# Convert the mask to a white color in the mask_image
mask_layer = (mask > 0).astype(np.uint8) * 255
for c in range(3): # Assuming RGB, repeat mask for all channels
mask_image[:, :, c] = mask_layer
# Save the mask image
mask_filename = f"mask_image_{i+1}.png"
Image.fromarray(mask_image).save(mask_filename)
mask_images.append(mask_filename)
plt.close() # Close the figure to free up memory
return combined_images, mask_images
def load_model(checkpoint):
# Load model accordingly to user's choice
if checkpoint == "tiny":
sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
model_cfg = "sam2_hiera_t.yaml"
return sam2_checkpoint, model_cfg
elif checkpoint == "samll":
sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
model_cfg = "sam2_hiera_s.yaml"
return sam2_checkpoint, model_cfg
elif checkpoint == "base-plus":
sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
model_cfg = "sam2_hiera_b+.yaml"
return sam2_checkpoint, model_cfg
elif checkpoint == "large":
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
return sam2_checkpoint, model_cfg
def sam_process(input_first_frame_image, checkpoint, tracking_points, trackings_input_label, video_frames_dir, scanned_frames, progress=gr.Progress(track_tqdm=True)):
# 1. We need to preprocess the video and store frames in the right directory
# — Penser à utiliser un ID unique pour le dossier
sam2_checkpoint, model_cfg = load_model(checkpoint)
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
video_dir = video_frames_dir
# scan all the JPEG frame names in this directory
frame_names = scanned_frames
inference_state = predictor.init_state(video_path=video_dir)
# segment and track one object
# predictor.reset_state(inference_state) # if any previous tracking, reset
# Add new point
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array(tracking_points.value, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array(trackings_input_label.value, np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
# Create the plot
plt.figure(figsize=(12, 8))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_points(points, labels, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
# Save the plot as a JPG file
first_frame_output_filename = "output_first_frame.jpg"
plt.savefig(first_frame_output_filename, format='jpg')
plt.close()
torch.cuda.empty_cache()
return "output_first_frame.jpg", frame_names, inference_state
def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, progress=gr.Progress(track_tqdm=True)):
#### PROPAGATION ####
sam2_checkpoint, model_cfg = load_model(checkpoint)
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = stored_inference_state
frame_names = stored_frame_names
video_dir = video_frames_dir
# Define a directory to save the JPEG images
frames_output_dir = "frames_output_images"
os.makedirs(frames_output_dir, exist_ok=True)
# Initialize a list to store file paths of saved images
jpeg_images = []
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# render the segmentation results every few frames
if vis_frame_type == "check":
vis_frame_stride = 15
elif vis_frame_type == "render":
vis_frame_stride = 1
plt.close("all")
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
plt.figure(figsize=(6, 4))
plt.title(f"frame {out_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
# Define the output filename and save the figure as a JPEG file
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
plt.savefig(output_filename, format='jpg')
# Close the plot
plt.close()
# Append the file path to the list
jpeg_images.append(output_filename)
torch.cuda.empty_cache()
print(f"JPEG_IMAGES: {jpeg_images}")
if vis_frame_type == "check":
return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=jpeg_images, value=jpeg_images[0], visible=True)
elif vis_frame_type == "render":
# Create a video clip from the image sequence
original_fps = get_video_fps(video_in)
fps = original_fps # Frames per second
total_frames = len(jpeg_images)
clip = ImageSequenceClip(jpeg_images, fps=fps)
# Write the result to a file
final_vid_output_path = "output_video.mp4"
# Write the result to a file
clip.write_videofile(
final_vid_output_path,
codec='libx264'
)
return gr.update(value=None), gr.update(value=final_vid_output_path), None
def update_ui(vis_frame_type):
if vis_frame_type == "check":
return gr.update(visible=True), gr.update(visible=False)
elif vis_frame_type == "render":
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as demo:
first_frame_path = gr.State()
tracking_points = gr.State([])
trackings_input_label = gr.State([])
video_frames_dir = gr.State()
scanned_frames = gr.State()
stored_inference_state = gr.State()
stored_frame_names = gr.State()
with gr.Column():
gr.Markdown("# SAM2 Video Predictor")
gr.Markdown("This is a simple demo for video segmentation with SAM2.")
gr.Markdown("""Instructions:
1. Upload your video
2. With 'include' point type selected, Click on the object to mask on first frame
3. Switch to 'exclude' point type if you want to specify an area to avoid
4. Submit !
""")
with gr.Row():
with gr.Column():
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
clear_points_btn = gr.Button("Clear Points", scale=1)
input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(
label="Point n Click map",
type="filepath",
interactive=False
)
with gr.Row():
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
submit_btn = gr.Button("Submit", size="lg")
with gr.Accordion("Your video IN", open=True) as video_in_drawer:
video_in = gr.Video(label="Video IN")
with gr.Column():
working_frame = gr.Dropdown(label="working frame ID", choices=None, value=None, visible=False)
output_result = gr.Image(label="current working mask ref")
with gr.Row():
vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2)
propagate_btn = gr.Button("Propagate", scale=1)
output_propagated = gr.Gallery(label="Propagated Mask samples gallery", visible=False)
output_video = gr.Video(visible=False)
# output_result_mask = gr.Image()
clear_points_btn.click(
fn = preprocess_image,
inputs = input_first_frame_image,
outputs = [first_frame_path, tracking_points, trackings_input_label, points_map, stored_inference_state],
queue=False
)
video_in.upload(
fn = preprocess_video_in,
inputs = [video_in],
outputs = [first_frame_path, tracking_points, trackings_input_label, input_first_frame_image, points_map, video_frames_dir, scanned_frames, stored_inference_state, stored_frame_names, video_in_drawer],
queue = False
)
points_map.select(
fn = get_point,
inputs = [point_type, tracking_points, trackings_input_label, first_frame_path],
outputs = [tracking_points, trackings_input_label, points_map],
queue = False
)
submit_btn.click(
fn = sam_process,
inputs = [input_first_frame_image, checkpoint, tracking_points, trackings_input_label, video_frames_dir, scanned_frames],
outputs = [output_result, stored_frame_names, stored_inference_state]
)
propagate_btn.click(
fn = update_ui,
inputs = [vis_frame_type],
outputs = [output_propagated, output_video],
queue=False
).then(
fn = propagate_to_all,
inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type],
outputs = [output_propagated, output_video, working_frame]
)
demo.launch(show_api=False, show_error=True) |