Spaces:
Sleeping
Sleeping
File size: 26,022 Bytes
c4a81c0 7f9d65e 96e731e c4a81c0 ba0d504 c4a81c0 6c0d568 e65f811 a4f8a15 6c0d568 1eecd17 eee8ee3 6c0d568 eee8ee3 0479145 6c0d568 fbb77f2 13b266e fd0d56e 13b266e fd0d56e 13b266e fd0d56e 96e731e d5deb3f 83fd490 d5deb3f 59c23c3 d5deb3f eee8ee3 0479145 d5deb3f 96e731e 0479145 96e731e d5deb3f 0479145 c49015b 0479145 c49015b 0479145 96e731e 0479145 68c6b17 96e731e 68c6b17 9466458 d5deb3f 96e731e d5deb3f 0479145 62bb836 eee8ee3 3b79011 eee8ee3 3b79011 935805a 62bb836 eee8ee3 935805a 3b79011 935805a 3b79011 935805a eee8ee3 935805a eee8ee3 aafe80a 0479145 6c0d568 0479145 6c0d568 0479145 6c0d568 f065d89 0479145 6c0d568 0479145 6c0d568 f2010da 0479145 a4918b7 96e731e a4918b7 b308d40 a4918b7 96e731e a4918b7 b308d40 a4918b7 96e731e a4918b7 b308d40 a4918b7 96e731e f2010da 95134d2 a4918b7 96e731e f3e22f7 96e731e f27deb9 0fe5dd3 96e731e f2010da 96e731e 0479145 96e731e 0479145 9466458 f2010da 0479145 68c6b17 96e731e 9466458 e5e0edf 0479145 c4a81c0 6c0d568 96e731e e3a7f2f 0479145 96e731e e3a7f2f 7f9d65e e3a7f2f 7f9d65e 0479145 6d8faa9 0479145 6c0d568 0479145 f2010da 0479145 b048b56 820b9d5 3e3cd82 fc17a11 b048b56 f013bf1 6c0d568 1c84a81 f2010da 28dd534 f82120a 62402d2 28dd534 0479145 0683253 0479145 f065d89 6c0d568 0479145 28dd534 ab48935 0479145 6c0d568 0479145 6c0d568 22a3ce6 6c326ed f065d89 97539a7 f065d89 e644f55 3760c54 b048b56 ab48935 fbb77f2 28dd534 3760c54 28dd534 fbb77f2 13b266e fd0d56e fac93d0 fbb77f2 469fa31 22a3ce6 469fa31 3760c54 f065d89 11d0cdc f065d89 13b266e f065d89 13b266e f065d89 13b266e f065d89 13b266e f065d89 13b266e f065d89 11d0cdc 469fa31 f065d89 4d67d4b 6c0d568 7f9d65e fb0210c d264f81 fb0210c 7f9d65e 6724ff0 d264f81 fac93d0 a6c72d3 2ac24da 9466458 fc57062 c8f511c 25265e2 7c269bc c8f511c eee8ee3 f2010da 68c6b17 2ac24da e61c4ed 820b9d5 6c0d568 0479145 4d3675e eee8ee3 abdc509 eee8ee3 b2b166e 1c1d975 b177fca 71cdd0e bd058a3 dfb0d1d b2b166e 048e66d 0eaea77 4611a01 0eaea77 b780a9f 28dd534 3760c54 0479145 eee8ee3 0c327c7 d5deb3f 0479145 d5deb3f e8b186a 51c3be9 eee8ee3 d5deb3f 0c327c7 e8b186a d5deb3f 8a52e2f d5deb3f e8b186a 0c327c7 d5deb3f 96e731e d5deb3f 59c23c3 d5deb3f eee8ee3 1c85423 d264f81 7f9d65e d264f81 7f9d65e 1c85423 7f9d65e 6c0d568 96e731e f3e22f7 96e731e 820b9d5 96e731e f013bf1 96e731e 2ac24da 96e731e e3a7f2f 458d4b3 0fe5dd3 f2010da 2ac24da a6c72d3 9dde1ea 2ac24da f2010da 4d67d4b f2010da 1c84a81 3760c54 6c0d568 e8b186a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
import subprocess
import re
from typing import List, Tuple, Optional
# Define the command to be executed
command = ["python", "setup.py", "build_ext", "--inplace"]
# Execute the command
result = subprocess.run(command, capture_output=True, text=True)
# Print the output and error (if any)
print("Output:\n", result.stdout)
print("Errors:\n", result.stderr)
# Check if the command was successful
if result.returncode == 0:
print("Command executed successfully.")
else:
print("Command failed with return code:", result.returncode)
import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor
from moviepy.editor import ImageSequenceClip
def get_video_properties(video_path):
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the FPS of the video
fps = cap.get(cv2.CAP_PROP_FPS)
# Get the width and height of the video
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Release the video capture object
cap.release()
return fps, width, height
def clear_points(image):
# we clean all
return [
image, # first_frame_path
gr.State([]), # tracking_points
gr.State([]), # trackings_input_label
image, # points_map
#gr.State() # stored_inference_state
]
def preprocess_video_in(video_path):
# Generate a unique ID based on the current date and time
unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
# Set directory with this ID to store video frames
extracted_frames_output_dir = f'frames_{unique_id}'
# Create the output directory
os.makedirs(extracted_frames_output_dir, exist_ok=True)
### Process video frames ###
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the frames per second (FPS) of the video
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate the number of frames to process (10 seconds of video)
max_frames = int(fps * 10)
frame_number = 0
first_frame = None
while True:
ret, frame = cap.read()
if not ret or frame_number >= max_frames:
break
# Format the frame filename as '00000.jpg'
frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
# Save the frame as a JPEG file
cv2.imwrite(frame_filename, frame)
# Store the first frame
if frame_number == 0:
first_frame = frame_filename
frame_number += 1
# Release the video capture object
cap.release()
# scan all the JPEG frame names in this directory
scanned_frames = [
p for p in os.listdir(extracted_frames_output_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
# print(f"SCANNED_FRAMES: {scanned_frames}")
return [
first_frame, # first_frame_path
gr.State([]), # tracking_points
gr.State([]), # trackings_input_label
first_frame, # input_first_frame_image
first_frame, # points_map
extracted_frames_output_dir, # video_frames_dir
scanned_frames, # scanned_frames
None, # stored_inference_state
None, # stored_frame_names
gr.update(open=False) # video_in_drawer
]
def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.value.append(evt.index)
print(f"TRACKING POINT: {tracking_points.value}")
if point_type == "include":
trackings_input_label.value.append(1)
elif point_type == "exclude":
trackings_input_label.value.append(0)
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
# Open the image and get its dimensions
transparent_background = Image.open(input_first_frame_image).convert('RGBA')
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points.value):
if trackings_input_label.value[index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_white_mask(mask, ax):
# Ensure mask is binary (values 0 or 1)
mask = (mask > 0).astype(float) # Convert to binary mask
h, w = mask.shape[-2:]
# Create a white mask (RGBA: [1, 1, 1, alpha])
alpha = 1.0 # Fully opaque
color = np.array([1, 1, 1, alpha])
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# Display black background
ax.imshow(np.zeros((h, w, 3), dtype=float)) # Black background
ax.imshow(mask_image) # Overlay white mask
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def load_model(checkpoint):
# Load model accordingly to user's choice
if checkpoint == "tiny":
sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
model_cfg = "sam2_hiera_t.yaml"
return [sam2_checkpoint, model_cfg]
elif checkpoint == "samll":
sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
model_cfg = "sam2_hiera_s.yaml"
return [sam2_checkpoint, model_cfg]
elif checkpoint == "base-plus":
sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
model_cfg = "sam2_hiera_b+.yaml"
return [sam2_checkpoint, model_cfg]
elif checkpoint == "large":
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
return [sam2_checkpoint, model_cfg]
def get_mask_sam_process(
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
scanned_frames,
working_frame: str = None, # current frame being added points
available_frames_to_check: List[str] = [],
# progress=gr.Progress(track_tqdm=True)
):
# get model and model config paths
print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
sam2_checkpoint, model_cfg = load_model(checkpoint)
print("MODEL LOADED")
# set predictor
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
print("PREDICTOR READY")
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
# print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
video_dir = video_frames_dir
# scan all the JPEG frame names in this directory
frame_names = scanned_frames
# print(f"STORED INFERENCE STEP: {stored_inference_state}")
if stored_inference_state is None:
# Init SAM2 inference_state
inference_state = predictor.init_state(video_path=video_dir)
print("NEW INFERENCE_STATE INITIATED")
else:
inference_state = stored_inference_state
# segment and track one object
# predictor.reset_state(inference_state) # if any previous tracking, reset
### HANDLING WORKING FRAME
# new_working_frame = None
# Add new point
if working_frame is None:
ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame
working_frame = "frame_0.jpg"
else:
# Use a regular expression to find the integer
match = re.search(r'frame_(\d+)', working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
print(f"NEW_WORKING_FRAME PATH: {working_frame}")
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array(tracking_points.value, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array(trackings_input_label.value, np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
# Create the plot
plt.figure(figsize=(12, 8))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_points(points, labels, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
# Save the plot as a JPG file
first_frame_output_filename = "output_first_frame.jpg"
plt.savefig(first_frame_output_filename, format='jpg')
plt.close()
torch.cuda.empty_cache()
# Assuming available_frames_to_check.value is a list
if working_frame not in available_frames_to_check:
available_frames_to_check.append(working_frame)
print(available_frames_to_check)
return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame, progress=gr.Progress(track_tqdm=True)):
#### PROPAGATION ####
sam2_checkpoint, model_cfg = load_model(checkpoint)
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = stored_inference_state
frame_names = stored_frame_names
video_dir = video_frames_dir
# Define a directory to save the JPEG images
frames_output_dir = "frames_output_images"
os.makedirs(frames_output_dir, exist_ok=True)
mask_frames_output_dir = "mask_frames_output_images"
os.makedirs(mask_frames_output_dir, exist_ok=True)
# Initialize a list to store file paths of saved images
jpeg_images = []
masks_images = []
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# render the segmentation results every few frames
if vis_frame_type == "check":
vis_frame_stride = 15
elif vis_frame_type == "render":
vis_frame_stride = 1
plt.close("all")
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
plt.figure(figsize=(6, 4))
plt.title(f"frame {out_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
# Define the output filename and save the figure as a JPEG file
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
plt.savefig(output_filename, format='jpg')
# Close the plot
plt.close()
# Append the file path to the list
jpeg_images.append(output_filename)
if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")
# Step 2: Create and store a black-and-white mask image using show_white_mask
# Create a figure without displaying it for the white mask
fig, ax = plt.subplots(figsize=(6, 4))
ax.axis("off") # Remove axes for a clean mask
# Overlay each mask as white on a black background
for out_mask in video_segments[out_frame_idx].values():
show_white_mask(out_mask, ax)
# Save the white mask figure to an image in memory
mask_filename = os.path.join(mask_frames_output_dir, f"mask_{out_frame_idx}.jpg")
fig.savefig(mask_filename, format='jpg', bbox_inches="tight", pad_inches=0)
plt.close(fig)
# Add the saved mask image to the masks_images array
masks_images.append(mask_filename)
torch.cuda.empty_cache()
print(f"JPEG_IMAGES: {jpeg_images}")
if vis_frame_type == "check":
return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True), None
elif vis_frame_type == "render":
# Create a video clip from the image sequence
original_fps, o_width, o_height = get_video_properties(video_in)
fps = original_fps # Frames per second
total_frames = len(jpeg_images)
clip = ImageSequenceClip(jpeg_images, fps=fps)
# Write the result to a file
final_vid_output_path = "output_video.mp4"
# Write the result to a file
clip.write_videofile(
final_vid_output_path,
codec='libx264'
)
print("MAKING MASK VIDEO ...")
# Create a video from the masks_images array
mask_video_filename = "final_masks_video.mp4"
# Define the video writer with the original video's dimensions
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video_writer = cv2.VideoWriter(mask_video_filename, fourcc, fps, (o_width, o_height))
# Write each mask image to the video
for mask_path in masks_images:
# Read the mask frame
frame = cv2.imread(mask_path)
# Resize the mask frame to the original video's dimensions
frame_resized = cv2.resize(frame, (o_width, o_height), interpolation=cv2.INTER_NEAREST)
# Write the resized frame to the video
video_writer.write(frame_resized)
# Release the video writer
video_writer.release()
print(f"Mask Video saved at {mask_video_filename}")
return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True), mask_video_filename
def update_ui(vis_frame_type):
if vis_frame_type == "check":
return gr.update(visible=True), gr.update(visible=False)
elif vis_frame_type == "render":
return gr.update(visible=False), gr.update(visible=True)
def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
new_working_frame = None
if working_frame == None:
new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
else:
# Use a regular expression to find the integer
match = re.search(r'frame_(\d+)', working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
return gr.State([]), gr.State([]), new_working_frame, new_working_frame
def reset_propagation(first_frame_path, predictor, stored_inference_state):
predictor.reset_state(stored_inference_state)
# print(f"RESET State: {stored_inference_state} ")
return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)
css="""
div#component-18, div#component-25, div#component-35, div#component-41{
align-items: stretch!important;
}
"""
with gr.Blocks(css=css) as demo:
first_frame_path = gr.State()
tracking_points = gr.State([])
trackings_input_label = gr.State([])
video_frames_dir = gr.State()
scanned_frames = gr.State()
loaded_predictor = gr.State()
stored_inference_state = gr.State()
stored_frame_names = gr.State()
available_frames_to_check = gr.State([])
with gr.Column():
gr.Markdown("# SAM2 Video Predictor")
gr.Markdown("This is a simple demo for video segmentation with SAM2.")
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Group():
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
clear_points_btn = gr.Button("Clear Points", scale=1)
input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(
label="Point n Click map",
type="filepath",
interactive=False
)
with gr.Group():
with gr.Row():
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
submit_btn = gr.Button("Get Mask", size="lg")
with gr.Accordion("Your video IN", open=True) as video_in_drawer:
video_in = gr.Video(label="Video IN", format="mp4")
with gr.Group():
with gr.Group():
with gr.Row():
working_frame = gr.Dropdown(label="working frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True)
change_current = gr.Button("change current", visible=False)
output_result = gr.Image(label="current working mask ref")
with gr.Group():
with gr.Row():
vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2)
propagate_btn = gr.Button("Propagate", scale=1)
reset_prpgt_brn = gr.Button("Reset", visible=False)
gr.HTML("""
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a> to skip queue and avoid OOM errors from heavy public load
""")
with gr.Column():
gr.Markdown("""Instructions: (read the instructions)
1. Upload your video [MP4-24fps]
2. With 'include' point type selected, Click on the object to mask on first frame
3. Switch to 'exclude' point type if you want to specify an area to avoid
4. Get Mask !
5. Check Propagation every 15 frames
6. Add point on corresponding frame number if any mask needs to be refined
7. If propagation seems ok on every 15 frames, propagate with "render" to render final masked video !
8. Hit Reset button if you want to refresh and start again.
* Input video will be processed over 10 seconds only for demo purpose :)
""")
output_propagated = gr.Gallery(label="Propagated Mask samples gallery", columns=4, visible=False)
output_video = gr.Video(visible=False)
mask_final_output = gr.Video(label="Mask Video")
# output_result_mask = gr.Image()
# When new video is uploaded
video_in.upload(
fn = preprocess_video_in,
inputs = [video_in],
outputs = [
first_frame_path,
tracking_points, # update Tracking Points in the gr.State([]) object
trackings_input_label, # update Tracking Labels in the gr.State([]) object
input_first_frame_image, # hidden component used as ref when clearing points
points_map, # Image component where we add new tracking points
video_frames_dir, # Array where frames from video_in are deep stored
scanned_frames, # Scanned frames by SAM2
stored_inference_state, # Sam2 inference state
stored_frame_names, #
video_in_drawer, # Accordion to hide uploaded video player
],
queue = False
)
# triggered when we click on image to add new points
points_map.select(
fn = get_point,
inputs = [
point_type, # "include" or "exclude"
tracking_points, # get tracking_points values
trackings_input_label, # get tracking label values
input_first_frame_image, # gr.State() first frame path
],
outputs = [
tracking_points, # updated with new points
trackings_input_label, # updated with corresponding labels
points_map, # updated image with points
],
queue = False
)
# Clear every points clicked and added to the map
clear_points_btn.click(
fn = clear_points,
inputs = input_first_frame_image, # we get the untouched hidden image
outputs = [
first_frame_path,
tracking_points,
trackings_input_label,
points_map,
#stored_inference_state,
],
queue=False
)
change_current.click(
fn = switch_working_frame,
inputs = [working_frame, scanned_frames, video_frames_dir],
outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
queue=False
)
submit_btn.click(
fn = get_mask_sam_process,
inputs = [
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir,
scanned_frames,
working_frame,
available_frames_to_check,
],
outputs = [
change_current,
output_result,
stored_frame_names,
loaded_predictor,
stored_inference_state,
working_frame,
],
queue=False
)
reset_prpgt_brn.click(
fn = reset_propagation,
inputs = [first_frame_path, loaded_predictor, stored_inference_state],
outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
queue=False
)
propagate_btn.click(
fn = update_ui,
inputs = [vis_frame_type],
outputs = [output_propagated, output_video],
queue=False
).then(
fn = propagate_to_all,
inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn, mask_final_output]
)
demo.launch(show_api=False, show_error=True) |