File size: 3,450 Bytes
31757cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
"""
Reimplement evaluation.mat provided by Adobe in python
Output of `compute_gradient_loss` is sightly different from the MATLAB version provided by Adobe (less than 0.1%)
Output of `compute_connectivity_error` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm)
So do not report results calculated by these functions in your paper.
Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`.
by Yaoyi Li
"""
import scipy.ndimage
import numpy as np
from skimage.measure import label
import scipy.ndimage.morphology
def gauss(x, sigma):
y = np.exp(-x ** 2 / (2 * sigma ** 2)) / (sigma * np.sqrt(2 * np.pi))
return y
def dgauss(x, sigma):
y = -x * gauss(x, sigma) / (sigma ** 2)
return y
def gaussgradient(im, sigma):
epsilon = 1e-2
halfsize = np.ceil(sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))).astype(np.int32)
size = 2 * halfsize + 1
hx = np.zeros((size, size))
for i in range(0, size):
for j in range(0, size):
u = [i - halfsize, j - halfsize]
hx[i, j] = gauss(u[0], sigma) * dgauss(u[1], sigma)
hx = hx / np.sqrt(np.sum(np.abs(hx) * np.abs(hx)))
hy = hx.transpose()
gx = scipy.ndimage.convolve(im, hx, mode='nearest')
gy = scipy.ndimage.convolve(im, hy, mode='nearest')
return gx, gy
def compute_gradient_loss(pred, target, trimap):
pred = pred / 255.0
target = target / 255.0
pred_x, pred_y = gaussgradient(pred, 1.4)
target_x, target_y = gaussgradient(target, 1.4)
pred_amp = np.sqrt(pred_x ** 2 + pred_y ** 2)
target_amp = np.sqrt(target_x ** 2 + target_y ** 2)
error_map = (pred_amp - target_amp) ** 2
loss = np.sum(error_map[trimap == 128])
return loss / 1000.
def getLargestCC(segmentation):
labels = label(segmentation, connectivity=1)
largestCC = labels == np.argmax(np.bincount(labels.flat))
return largestCC
def compute_connectivity_error(pred, target, trimap, step=0.1):
pred = pred / 255.0
target = target / 255.0
h, w = pred.shape
thresh_steps = list(np.arange(0, 1 + step, step))
l_map = np.ones_like(pred, dtype=np.float) * -1
for i in range(1, len(thresh_steps)):
pred_alpha_thresh = (pred >= thresh_steps[i]).astype(np.int)
target_alpha_thresh = (target >= thresh_steps[i]).astype(np.int)
omega = getLargestCC(pred_alpha_thresh * target_alpha_thresh).astype(np.int)
flag = ((l_map == -1) & (omega == 0)).astype(np.int)
l_map[flag == 1] = thresh_steps[i - 1]
l_map[l_map == -1] = 1
pred_d = pred - l_map
target_d = target - l_map
pred_phi = 1 - pred_d * (pred_d >= 0.15).astype(np.int)
target_phi = 1 - target_d * (target_d >= 0.15).astype(np.int)
loss = np.sum(np.abs(pred_phi - target_phi)[trimap == 128])
return loss / 1000.
def compute_mse_loss(pred, target, trimap):
error_map = (pred - target) / 255.0
loss = np.sum((error_map ** 2) * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8)
return loss
def compute_sad_loss(pred, target, trimap):
error_map = np.abs((pred - target) / 255.0)
loss = np.sum(error_map * (trimap == 128))
return loss / 1000, np.sum(trimap == 128) / 1000
def compute_mad_loss(pred, target, trimap):
error_map = np.abs((pred - target) / 255.0)
loss = np.sum(error_map * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8)
return loss
|