Video-Matting-Anything / networks /generator_m2m.py
fffiloni's picture
Duplicate from shi-labs/Matting-Anything
31757cd
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import CONFIG
from networks import m2ms, ops
import sys
sys.path.insert(0, './segment-anything')
from segment_anything import sam_model_registry
class sam_m2m(nn.Module):
def __init__(self, m2m):
super(sam_m2m, self).__init__()
if m2m not in m2ms.__all__:
raise NotImplementedError("Unknown M2M {}".format(m2m))
self.m2m = m2ms.__dict__[m2m](nc=256)
self.seg_model = sam_model_registry['vit_b'](checkpoint=None)
self.seg_model.eval()
def forward(self, image, guidance):
self.seg_model.eval()
with torch.no_grad():
feas, masks = self.seg_model.forward_m2m(image, guidance, multimask_output=True)
pred = self.m2m(feas, image, masks)
return pred
def forward_inference(self, image_dict):
self.seg_model.eval()
with torch.no_grad():
feas, masks, post_masks = self.seg_model.forward_m2m_inference(image_dict, multimask_output=True)
pred = self.m2m(feas, image_dict["image"], masks)
return feas, pred, post_masks
def get_generator_m2m(seg, m2m):
if seg == 'sam':
generator = sam_m2m(m2m=m2m)
return generator