File size: 1,569 Bytes
372395e
 
 
 
 
 
 
 
 
 
79b4496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372395e
 
 
79b4496
372395e
 
 
 
 
79b4496
 
372395e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr

caption = gr.Blocks.load(name="spaces/SRDdev/Image-Caption")
audio_gen = gr.Blocks.load(name="spaces/haoheliu/audioldm-text-to-audio-generation")

def infer(image_input):
    cap = caption(image_input, fn_index=0)
    sound = audio_gen(cap, 5, 2.5, 45, 3, fn_index=0)
    return sound

title = """
    <div style="text-align: center; max-width: 700px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            Image to Sound Effect
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Convert an image to corresponding sound effect through AudioLDM
        </p>
    </div>
"""

article = """
    
    <div class="footer">
        <p>
         
        Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates πŸ€—
        </p>
    </div>    
"""

with gr.Blocks(css="style.css") as demo:
    with gr.Column(elem_id="col-container"):
        
        gr.HTML(title)
    
        input_img = gr.Image(type="filepath", elem_id="input-img")
        sound_output = gr.Video(label="Result", elem_id="sound-output")
        
        generate = gr.Button("Generate Music from Image")

        gr.HTML(article)
    generate.click(infer, inputs=[input_img], outputs=[sound_output], api_name="i2m")

demo.queue(max_size=32, concurrency_count=20).launch()