from fish_diffusion.datasets.hifisinger import HiFiSVCDataset from fish_diffusion.datasets.utils import get_datasets_from_subfolder _base_ = [ "./_base_/archs/hifi_svc.py", "./_base_/trainers/base.py", "./_base_/schedulers/exponential.py", "./_base_/datasets/hifi_svc.py", ] speaker_mapping = { "azure": 0, } model = dict( type="HiFiSVC", speaker_encoder=dict( input_size=len(speaker_mapping), ), ) preprocessing = dict( text_features_extractor=dict( type="ContentVec", ), pitch_extractor=dict( type="CrepePitchExtractor", keep_zeros=False, f0_min=40.0, f0_max=2000.0, ), energy_extractor=dict( type="RMSEnergyExtractor", ), augmentations=[ dict( type="FixedPitchShifting", key_shifts=[-5.0, 5.0], probability=0.75, ), ], ) trainer = dict( # Disable gradient clipping, which is not supported by custom optimization gradient_clip_val=None, max_steps=1000000, )