File size: 6,252 Bytes
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import subprocess as sp
import sys
import time
from datetime import timedelta
from functools import lru_cache
from pathlib import Path
from random import Random

import click
import numpy as np
import torch
import torchaudio
from hydra import compose, initialize
from hydra.utils import instantiate
from lightning import LightningModule
from loguru import logger
from omegaconf import OmegaConf

from fish_speech.utils.file import AUDIO_EXTENSIONS, list_files, load_filelist

# register eval resolver
OmegaConf.register_new_resolver("eval", eval)
# This file is used to convert the audio files to text files using the Whisper model.
# It's mainly used to generate the training data for the VQ model.


RANK = int(os.environ.get("SLURM_PROCID", 0))
WORLD_SIZE = int(os.environ.get("SLURM_NTASKS", 1))

logger_format = (
    "<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | "
    "<level>{level: <8}</level> | "
    "<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> | "
    "{extra[rank]} - <level>{message}</level>"
)
logger.configure(extra={"rank": f"RANK: {RANK} / {WORLD_SIZE}"})
logger.remove()
logger.add(sys.stderr, format=logger_format)


@lru_cache(maxsize=1)
def get_model(
    config_name: str = "vqgan_pretrain",
    checkpoint_path: str = "checkpoints/vqgan/step_000380000.ckpt",
):
    with initialize(version_base="1.3", config_path="../../fish_speech/configs"):
        cfg = compose(config_name=config_name)

    model: LightningModule = instantiate(cfg.model)
    state_dict = torch.load(
        checkpoint_path,
        map_location=model.device,
    )
    if "state_dict" in state_dict:
        state_dict = state_dict["state_dict"]

    model.load_state_dict(state_dict, strict=False)
    model.eval()
    model.cuda()

    logger.info(f"Loaded model")
    return model


@torch.inference_mode()
def process_batch(files: list[Path], model) -> float:
    wavs = []
    audio_lengths = []
    new_files = []
    max_length = total_time = 0

    for file in files:
        try:
            wav, sr = torchaudio.load(
                str(file), backend="sox"
            )  # Need to install libsox-dev
        except Exception as e:
            logger.error(f"Error reading {file}: {e}")
            continue

        if wav.shape[0] > 1:
            wav = wav.mean(dim=0, keepdim=True)

        wav = torchaudio.functional.resample(wav.cuda(), sr, model.sampling_rate)[0]
        total_time += len(wav) / model.sampling_rate
        max_length = max(max_length, len(wav))

        wavs.append(wav)
        audio_lengths.append(len(wav))
        new_files.append(file)

    files = new_files

    # Pad to max length
    for i, wav in enumerate(wavs):
        wavs[i] = torch.nn.functional.pad(wav, (0, max_length - len(wav)), "constant")

    audios = torch.stack(wavs, dim=0)[:, None]
    audio_lengths = torch.tensor(audio_lengths, device=model.device, dtype=torch.long)

    # Calculate lengths
    indices, feature_lengths = model.encode(audios, audio_lengths)

    # Save to disk
    outputs = indices.cpu().numpy()

    for file, length, feature, audio_length in zip(
        files, feature_lengths, outputs, audio_lengths
    ):
        feature = feature[:, :length]

        # (T,)
        with open(file.with_suffix(".npy"), "wb") as f:
            np.save(f, feature)

    return total_time


@click.command()
@click.argument("folder")
@click.option("--num-workers", default=1)
@click.option("--config-name", default="vqgan_pretrain")
@click.option(
    "--checkpoint-path",
    default="checkpoints/vq-gan-group-fsq-8x1024-wn-20x768-30kh.pth",
)
@click.option("--batch-size", default=64)
@click.option("--filelist", default=None, type=Path)
def main(
    folder: str,
    num_workers: int,
    config_name: str,
    checkpoint_path: str,
    batch_size: int,
    filelist: Path,
):
    if num_workers > 1 and WORLD_SIZE != num_workers:
        assert WORLD_SIZE == 1, "You should either use SLURM or this launcher, not both"

        logger.info(f"Spawning {num_workers} workers")

        visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", None)
        if visible_devices is None:
            visible_devices = list(range(torch.cuda.device_count()))
        else:
            visible_devices = visible_devices.split(",")

        processes = []
        for i in range(num_workers):
            env = os.environ.copy()
            env["CUDA_VISIBLE_DEVICES"] = str(visible_devices[i % len(visible_devices)])
            env["SLURM_PROCID"] = str(i)
            env["SLURM_NTASKS"] = str(num_workers)

            processes.append(
                sp.Popen(
                    [sys.executable] + sys.argv.copy(),
                    env=env,
                )
            )

        for p in processes:
            p.wait()

        logger.info(f"All workers finished")
        return

    # This is a worker
    logger.info(f"Starting worker")
    if filelist:
        files = [i[0] for i in load_filelist(filelist)]
    else:
        files = list_files(folder, AUDIO_EXTENSIONS, recursive=True, sort=False)

    print(f"Found {len(files)} files")
    # files = [Path(f) for f in files if not Path(f).with_suffix(".npy").exists()]

    total_files = len(files)
    files = files[RANK::WORLD_SIZE]
    logger.info(f"Processing {len(files)}/{total_files} files")

    # Batch processing
    total_time = 0
    begin_time = time.time()
    processed_files = 0
    model = get_model(config_name, checkpoint_path)

    for n_batch, idx in enumerate(range(0, len(files), batch_size)):
        batch = files[idx : idx + batch_size]
        batch_time = process_batch(batch, model)

        total_time += batch_time
        processed_files += len(batch)

        if (n_batch + 1) % 10 == 0:
            eta = (
                (time.time() - begin_time)
                / processed_files
                * (len(files) - processed_files)
            )
            logger.info(
                f"Processed {processed_files} files, {total_time / 3600:.2f} hours of audio, "
                + f"ETA: {timedelta(seconds=round(eta))}s"
            )

    logger.info(
        f"Finished processing {len(files)} files, {total_time / 3600:.2f} hours of audio"
    )


if __name__ == "__main__":
    main()