flatindo kadirnar commited on
Commit
95a9559
0 Parent(s):

Duplicate from ArtGAN/Image-Diffusion-WebUI

Browse files

Co-authored-by: Kadir Nar <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Stable Diffusion ControlNet WebUI
3
+ emoji: ⚡
4
+ colorFrom: gray
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 3.19.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ tags:
12
+ - making-demos
13
+ duplicated_from: ArtGAN/Image-Diffusion-WebUI
14
+ ---
15
+
16
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from diffusion_webui import (
4
+ StableDiffusionControlNetGenerator,
5
+ StableDiffusionControlNetInpaintGenerator,
6
+ StableDiffusionImage2ImageGenerator,
7
+ StableDiffusionInpaintGenerator,
8
+ StableDiffusionText2ImageGenerator,
9
+ )
10
+
11
+
12
+ def diffusion_app():
13
+ app = gr.Blocks()
14
+ with app:
15
+ gr.HTML(
16
+ """
17
+ <h1 style='text-align: center'>
18
+ Stable Diffusion + ControlNet + Inpaint
19
+ </h1>
20
+ """
21
+ )
22
+ gr.HTML(
23
+ """
24
+ <h3 style='text-align: center'>
25
+ Follow me for more!
26
+ <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
27
+ </h3>
28
+ """
29
+ )
30
+ with gr.Row():
31
+ with gr.Column():
32
+ with gr.Tab(label="Text2Image"):
33
+ StableDiffusionText2ImageGenerator.app()
34
+ with gr.Tab(label="Image2Image"):
35
+ StableDiffusionImage2ImageGenerator.app()
36
+ with gr.Tab(label="Inpaint"):
37
+ StableDiffusionInpaintGenerator.app()
38
+ with gr.Tab(label="Controlnet"):
39
+ StableDiffusionControlNetGenerator.app()
40
+ with gr.Tab(label="Controlnet Inpaint"):
41
+ StableDiffusionControlNetInpaintGenerator.app()
42
+
43
+ app.queue(concurrency_count=1)
44
+ app.launch(debug=True, enable_queue=True)
45
+
46
+
47
+ if __name__ == "__main__":
48
+ diffusion_app()
diffusion_webui/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusion_webui.diffusion_models.controlnet_inpaint_pipeline import (
2
+ StableDiffusionControlNetInpaintGenerator,
3
+ )
4
+ from diffusion_webui.diffusion_models.controlnet_pipeline import (
5
+ StableDiffusionControlNetGenerator,
6
+ )
7
+ from diffusion_webui.diffusion_models.img2img_app import (
8
+ StableDiffusionImage2ImageGenerator,
9
+ )
10
+ from diffusion_webui.diffusion_models.inpaint_app import (
11
+ StableDiffusionInpaintGenerator,
12
+ )
13
+ from diffusion_webui.diffusion_models.text2img_app import (
14
+ StableDiffusionText2ImageGenerator,
15
+ )
16
+
17
+ __version__ = "2.5.0"
diffusion_webui/diffusion_models/__init__.py ADDED
File without changes
diffusion_webui/diffusion_models/base_controlnet_pipeline.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class ControlnetPipeline:
2
+ def __init__(self):
3
+ self.pipe = None
4
+
5
+ def load_model(self, stable_model_path: str, controlnet_model_path: str):
6
+ raise NotImplementedError()
7
+
8
+ def load_image(self, image_path: str):
9
+ raise NotImplementedError()
10
+
11
+ def controlnet_preprocces(self, read_image: str):
12
+ raise NotImplementedError()
13
+
14
+ def generate_image(
15
+ self,
16
+ image_path: str,
17
+ stable_model_path: str,
18
+ controlnet_model_path: str,
19
+ prompt: str,
20
+ negative_prompt: str,
21
+ num_images_per_prompt: int,
22
+ guidance_scale: int,
23
+ num_inference_step: int,
24
+ controlnet_conditioning_scale: int,
25
+ scheduler: str,
26
+ seed_generator: int,
27
+ ):
28
+ raise NotImplementedError()
29
+
30
+ def web_interface():
31
+ raise NotImplementedError()
diffusion_webui/diffusion_models/controlnet_inpaint_pipeline.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
5
+ from PIL import Image
6
+
7
+ from diffusion_webui.diffusion_models.base_controlnet_pipeline import (
8
+ ControlnetPipeline,
9
+ )
10
+ from diffusion_webui.utils.model_list import (
11
+ controlnet_model_list,
12
+ stable_model_list,
13
+ )
14
+ from diffusion_webui.utils.preprocces_utils import PREPROCCES_DICT
15
+ from diffusion_webui.utils.scheduler_list import (
16
+ SCHEDULER_MAPPING,
17
+ get_scheduler,
18
+ )
19
+
20
+
21
+ class StableDiffusionControlNetInpaintGenerator(ControlnetPipeline):
22
+ def __init__(self):
23
+ super().__init__()
24
+
25
+ def load_model(self, stable_model_path, controlnet_model_path, scheduler):
26
+ if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
27
+ controlnet = ControlNetModel.from_pretrained(
28
+ controlnet_model_path, torch_dtype=torch.float16
29
+ )
30
+ self.pipe = (
31
+ StableDiffusionControlNetInpaintPipeline.from_pretrained(
32
+ pretrained_model_name_or_path=stable_model_path,
33
+ controlnet=controlnet,
34
+ safety_checker=None,
35
+ torch_dtype=torch.float16,
36
+ )
37
+ )
38
+
39
+ self.pipe.model_name = stable_model_path
40
+ self.pipe.scheduler_name = scheduler
41
+ self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
42
+ self.pipe.to("cuda")
43
+ self.pipe.enable_xformers_memory_efficient_attention()
44
+
45
+ return self.pipe
46
+
47
+ def load_image(self, image):
48
+ image = np.array(image)
49
+ image = Image.fromarray(image)
50
+ return image
51
+
52
+ def controlnet_preprocces(
53
+ self,
54
+ read_image: str,
55
+ preprocces_type: str,
56
+ ):
57
+ processed_image = PREPROCCES_DICT[preprocces_type](read_image)
58
+ return processed_image
59
+
60
+ def generate_image(
61
+ self,
62
+ image_path: str,
63
+ stable_model_path: str,
64
+ controlnet_model_path: str,
65
+ prompt: str,
66
+ negative_prompt: str,
67
+ num_images_per_prompt: int,
68
+ height: int,
69
+ width: int,
70
+ strength: int,
71
+ guess_mode: bool,
72
+ guidance_scale: int,
73
+ num_inference_step: int,
74
+ controlnet_conditioning_scale: int,
75
+ scheduler: str,
76
+ seed_generator: int,
77
+ preprocces_type: str,
78
+ ):
79
+ normal_image = image_path["image"].convert("RGB").resize((512, 512))
80
+ mask_image = image_path["mask"].convert("RGB").resize((512, 512))
81
+
82
+ normal_image = self.load_image(image=normal_image)
83
+ mask_image = self.load_image(image=mask_image)
84
+
85
+ control_image = self.controlnet_preprocces(
86
+ read_image=normal_image, preprocces_type=preprocces_type
87
+ )
88
+ pipe = self.load_model(
89
+ stable_model_path=stable_model_path,
90
+ controlnet_model_path=controlnet_model_path,
91
+ scheduler=scheduler,
92
+ )
93
+
94
+ if seed_generator == 0:
95
+ random_seed = torch.randint(0, 1000000, (1,))
96
+ generator = torch.manual_seed(random_seed)
97
+ else:
98
+ generator = torch.manual_seed(seed_generator)
99
+
100
+ output = pipe(
101
+ prompt=prompt,
102
+ image=normal_image,
103
+ height=height,
104
+ width=width,
105
+ mask_image=mask_image,
106
+ strength=strength,
107
+ guess_mode=guess_mode,
108
+ control_image=control_image,
109
+ negative_prompt=negative_prompt,
110
+ num_images_per_prompt=num_images_per_prompt,
111
+ num_inference_steps=num_inference_step,
112
+ guidance_scale=guidance_scale,
113
+ controlnet_conditioning_scale=float(controlnet_conditioning_scale),
114
+ generator=generator,
115
+ ).images
116
+
117
+ return output
118
+
119
+ def app():
120
+ with gr.Blocks():
121
+ with gr.Row():
122
+ with gr.Column():
123
+ controlnet_inpaint_image_path = gr.Image(
124
+ source="upload",
125
+ tool="sketch",
126
+ elem_id="image_upload",
127
+ type="pil",
128
+ label="Upload",
129
+ ).style(height=260)
130
+
131
+ controlnet_inpaint_prompt = gr.Textbox(
132
+ lines=1, placeholder="Prompt", show_label=False
133
+ )
134
+ controlnet_inpaint_negative_prompt = gr.Textbox(
135
+ lines=1, placeholder="Negative Prompt", show_label=False
136
+ )
137
+
138
+ with gr.Row():
139
+ with gr.Column():
140
+ controlnet_inpaint_stable_model_path = gr.Dropdown(
141
+ choices=stable_model_list,
142
+ value=stable_model_list[0],
143
+ label="Stable Model Path",
144
+ )
145
+ controlnet_inpaint_preprocces_type = gr.Dropdown(
146
+ choices=list(PREPROCCES_DICT.keys()),
147
+ value=list(PREPROCCES_DICT.keys())[0],
148
+ label="Preprocess Type",
149
+ )
150
+ controlnet_inpaint_conditioning_scale = gr.Slider(
151
+ minimum=0.0,
152
+ maximum=1.0,
153
+ step=0.1,
154
+ value=1.0,
155
+ label="ControlNet Conditioning Scale",
156
+ )
157
+ controlnet_inpaint_guidance_scale = gr.Slider(
158
+ minimum=0.1,
159
+ maximum=15,
160
+ step=0.1,
161
+ value=7.5,
162
+ label="Guidance Scale",
163
+ )
164
+ controlnet_inpaint_height = gr.Slider(
165
+ minimum=128,
166
+ maximum=1280,
167
+ step=32,
168
+ value=512,
169
+ label="Height",
170
+ )
171
+ controlnet_inpaint_width = gr.Slider(
172
+ minimum=128,
173
+ maximum=1280,
174
+ step=32,
175
+ value=512,
176
+ label="Width",
177
+ )
178
+ controlnet_inpaint_guess_mode = gr.Checkbox(
179
+ label="Guess Mode"
180
+ )
181
+
182
+ with gr.Column():
183
+ controlnet_inpaint_model_path = gr.Dropdown(
184
+ choices=controlnet_model_list,
185
+ value=controlnet_model_list[0],
186
+ label="ControlNet Model Path",
187
+ )
188
+ controlnet_inpaint_scheduler = gr.Dropdown(
189
+ choices=list(SCHEDULER_MAPPING.keys()),
190
+ value=list(SCHEDULER_MAPPING.keys())[0],
191
+ label="Scheduler",
192
+ )
193
+ controlnet_inpaint_strength = gr.Slider(
194
+ minimum=0.1,
195
+ maximum=15,
196
+ step=0.1,
197
+ value=7.5,
198
+ label="Strength",
199
+ )
200
+ controlnet_inpaint_num_inference_step = gr.Slider(
201
+ minimum=1,
202
+ maximum=150,
203
+ step=1,
204
+ value=30,
205
+ label="Num Inference Step",
206
+ )
207
+ controlnet_inpaint_num_images_per_prompt = (
208
+ gr.Slider(
209
+ minimum=1,
210
+ maximum=4,
211
+ step=1,
212
+ value=1,
213
+ label="Number Of Images",
214
+ )
215
+ )
216
+ controlnet_inpaint_seed_generator = gr.Slider(
217
+ minimum=0,
218
+ maximum=1000000,
219
+ step=1,
220
+ value=0,
221
+ label="Seed(0 for random)",
222
+ )
223
+
224
+ # Button to generate the image
225
+ controlnet_inpaint_predict_button = gr.Button(
226
+ value="Generate Image"
227
+ )
228
+
229
+ with gr.Column():
230
+ # Gallery to display the generated images
231
+ controlnet_inpaint_output_image = gr.Gallery(
232
+ label="Generated images",
233
+ show_label=False,
234
+ elem_id="gallery",
235
+ ).style(grid=(1, 2))
236
+
237
+ controlnet_inpaint_predict_button.click(
238
+ fn=StableDiffusionControlNetInpaintGenerator().generate_image,
239
+ inputs=[
240
+ controlnet_inpaint_image_path,
241
+ controlnet_inpaint_stable_model_path,
242
+ controlnet_inpaint_model_path,
243
+ controlnet_inpaint_prompt,
244
+ controlnet_inpaint_negative_prompt,
245
+ controlnet_inpaint_num_images_per_prompt,
246
+ controlnet_inpaint_height,
247
+ controlnet_inpaint_width,
248
+ controlnet_inpaint_strength,
249
+ controlnet_inpaint_guess_mode,
250
+ controlnet_inpaint_guidance_scale,
251
+ controlnet_inpaint_num_inference_step,
252
+ controlnet_inpaint_conditioning_scale,
253
+ controlnet_inpaint_scheduler,
254
+ controlnet_inpaint_seed_generator,
255
+ controlnet_inpaint_preprocces_type,
256
+ ],
257
+ outputs=[controlnet_inpaint_output_image],
258
+ )
diffusion_webui/diffusion_models/controlnet_pipeline.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import cv2
4
+ from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
5
+ from PIL import Image
6
+
7
+ from diffusion_webui.diffusion_models.base_controlnet_pipeline import (
8
+ ControlnetPipeline,
9
+ )
10
+ from diffusion_webui.utils.model_list import (
11
+ controlnet_model_list,
12
+ stable_model_list,
13
+ )
14
+ from diffusion_webui.utils.preprocces_utils import PREPROCCES_DICT
15
+ from diffusion_webui.utils.scheduler_list import (
16
+ SCHEDULER_MAPPING,
17
+ get_scheduler,
18
+ )
19
+
20
+
21
+ stable_model_list = [
22
+ "runwayml/stable-diffusion-v1-5",
23
+ "dreamlike-art/dreamlike-diffusion-1.0",
24
+ "kadirnar/maturemalemix_v0",
25
+ "kadirnar/DreamShaper_v6"
26
+ ]
27
+
28
+ stable_inpiant_model_list = [
29
+ "stabilityai/stable-diffusion-2-inpainting",
30
+ "runwayml/stable-diffusion-inpainting",
31
+ "saik0s/realistic_vision_inpainting",
32
+ ]
33
+
34
+ controlnet_model_list = [
35
+ "lllyasviel/control_v11p_sd15_canny",
36
+ "lllyasviel/control_v11f1p_sd15_depth",
37
+ "lllyasviel/control_v11p_sd15_openpose",
38
+ "lllyasviel/control_v11p_sd15_scribble",
39
+ "lllyasviel/control_v11p_sd15_mlsd",
40
+ "lllyasviel/control_v11e_sd15_shuffle",
41
+ "lllyasviel/control_v11e_sd15_ip2p",
42
+ "lllyasviel/control_v11p_sd15_lineart",
43
+ "lllyasviel/control_v11p_sd15s2_lineart_anime",
44
+ "lllyasviel/control_v11p_sd15_softedge",
45
+ ]
46
+
47
+ class StableDiffusionControlNetGenerator(ControlnetPipeline):
48
+ def __init__(self):
49
+ self.pipe = None
50
+
51
+ def load_model(self, stable_model_path, controlnet_model_path, scheduler):
52
+ if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
53
+ controlnet = ControlNetModel.from_pretrained(
54
+ controlnet_model_path, torch_dtype=torch.float16
55
+ )
56
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
57
+ pretrained_model_name_or_path=stable_model_path,
58
+ controlnet=controlnet,
59
+ safety_checker=None,
60
+ torch_dtype=torch.float16,
61
+ )
62
+ self.pipe.model_name = stable_model_path
63
+ self.pipe.scheduler_name = scheduler
64
+
65
+ self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
66
+ self.pipe.scheduler_name = scheduler
67
+ self.pipe.to("cuda")
68
+ self.pipe.enable_xformers_memory_efficient_attention()
69
+
70
+ return self.pipe
71
+
72
+
73
+ def controlnet_preprocces(
74
+ self,
75
+ read_image: str,
76
+ preprocces_type: str,
77
+ ):
78
+ processed_image = PREPROCCES_DICT[preprocces_type](read_image)
79
+ return processed_image
80
+
81
+ def generate_image(
82
+ self,
83
+ image_path: str,
84
+ stable_model_path: str,
85
+ controlnet_model_path: str,
86
+ height: int,
87
+ width: int,
88
+ guess_mode: bool,
89
+ controlnet_conditioning_scale: int,
90
+ prompt: str,
91
+ negative_prompt: str,
92
+ num_images_per_prompt: int,
93
+ guidance_scale: int,
94
+ num_inference_step: int,
95
+ scheduler: str,
96
+ seed_generator: int,
97
+ preprocces_type: str,
98
+ ):
99
+ pipe = self.load_model(
100
+ stable_model_path=stable_model_path,
101
+ controlnet_model_path=controlnet_model_path,
102
+ scheduler=scheduler,
103
+ )
104
+ if preprocces_type== "ScribbleXDOG":
105
+ read_image = cv2.imread(image_path)
106
+ controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type)[0]
107
+ controlnet_image = Image.fromarray(controlnet_image)
108
+
109
+ elif preprocces_type== "None":
110
+ controlnet_image = self.controlnet_preprocces(read_image=image_path, preprocces_type=preprocces_type)
111
+ else:
112
+ read_image = Image.open(image_path)
113
+ controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type)
114
+
115
+ if seed_generator == 0:
116
+ random_seed = torch.randint(0, 1000000, (1,))
117
+ generator = torch.manual_seed(random_seed)
118
+ else:
119
+ generator = torch.manual_seed(seed_generator)
120
+
121
+
122
+ output = pipe(
123
+ prompt=prompt,
124
+ height=height,
125
+ width=width,
126
+ controlnet_conditioning_scale=float(controlnet_conditioning_scale),
127
+ guess_mode=guess_mode,
128
+ image=controlnet_image,
129
+ negative_prompt=negative_prompt,
130
+ num_images_per_prompt=num_images_per_prompt,
131
+ num_inference_steps=num_inference_step,
132
+ guidance_scale=guidance_scale,
133
+ generator=generator,
134
+ ).images
135
+
136
+ return output
137
+
138
+ def app():
139
+ with gr.Blocks():
140
+ with gr.Row():
141
+ with gr.Column():
142
+ controlnet_image_path = gr.Image(
143
+ type="filepath", label="Image"
144
+ ).style(height=260)
145
+ controlnet_prompt = gr.Textbox(
146
+ lines=1, placeholder="Prompt", show_label=False
147
+ )
148
+ controlnet_negative_prompt = gr.Textbox(
149
+ lines=1, placeholder="Negative Prompt", show_label=False
150
+ )
151
+
152
+ with gr.Row():
153
+ with gr.Column():
154
+ controlnet_stable_model_path = gr.Dropdown(
155
+ choices=stable_model_list,
156
+ value=stable_model_list[0],
157
+ label="Stable Model Path",
158
+ )
159
+ controlnet_preprocces_type = gr.Dropdown(
160
+ choices=list(PREPROCCES_DICT.keys()),
161
+ value=list(PREPROCCES_DICT.keys())[0],
162
+ label="Preprocess Type",
163
+ )
164
+ controlnet_conditioning_scale = gr.Slider(
165
+ minimum=0.0,
166
+ maximum=1.0,
167
+ step=0.1,
168
+ value=1.0,
169
+ label="ControlNet Conditioning Scale",
170
+ )
171
+ controlnet_guidance_scale = gr.Slider(
172
+ minimum=0.1,
173
+ maximum=15,
174
+ step=0.1,
175
+ value=7.5,
176
+ label="Guidance Scale",
177
+ )
178
+ controlnet_height = gr.Slider(
179
+ minimum=128,
180
+ maximum=1280,
181
+ step=32,
182
+ value=512,
183
+ label="Height",
184
+ )
185
+ controlnet_width = gr.Slider(
186
+ minimum=128,
187
+ maximum=1280,
188
+ step=32,
189
+ value=512,
190
+ label="Width",
191
+ )
192
+
193
+ with gr.Row():
194
+ with gr.Column():
195
+ controlnet_model_path = gr.Dropdown(
196
+ choices=controlnet_model_list,
197
+ value=controlnet_model_list[0],
198
+ label="ControlNet Model Path",
199
+ )
200
+ controlnet_scheduler = gr.Dropdown(
201
+ choices=list(SCHEDULER_MAPPING.keys()),
202
+ value=list(SCHEDULER_MAPPING.keys())[0],
203
+ label="Scheduler",
204
+ )
205
+ controlnet_num_inference_step = gr.Slider(
206
+ minimum=1,
207
+ maximum=150,
208
+ step=1,
209
+ value=30,
210
+ label="Num Inference Step",
211
+ )
212
+
213
+ controlnet_num_images_per_prompt = gr.Slider(
214
+ minimum=1,
215
+ maximum=4,
216
+ step=1,
217
+ value=1,
218
+ label="Number Of Images",
219
+ )
220
+ controlnet_seed_generator = gr.Slider(
221
+ minimum=0,
222
+ maximum=1000000,
223
+ step=1,
224
+ value=0,
225
+ label="Seed(0 for random)",
226
+ )
227
+ controlnet_guess_mode = gr.Checkbox(
228
+ label="Guess Mode"
229
+ )
230
+
231
+ # Button to generate the image
232
+ predict_button = gr.Button(value="Generate Image")
233
+
234
+ with gr.Column():
235
+ # Gallery to display the generated images
236
+ output_image = gr.Gallery(
237
+ label="Generated images",
238
+ show_label=False,
239
+ elem_id="gallery",
240
+ ).style(grid=(1, 2))
241
+
242
+ predict_button.click(
243
+ fn=StableDiffusionControlNetGenerator().generate_image,
244
+ inputs=[
245
+ controlnet_image_path,
246
+ controlnet_stable_model_path,
247
+ controlnet_model_path,
248
+ controlnet_height,
249
+ controlnet_width,
250
+ controlnet_guess_mode,
251
+ controlnet_conditioning_scale,
252
+ controlnet_prompt,
253
+ controlnet_negative_prompt,
254
+ controlnet_num_images_per_prompt,
255
+ controlnet_guidance_scale,
256
+ controlnet_num_inference_step,
257
+ controlnet_scheduler,
258
+ controlnet_seed_generator,
259
+ controlnet_preprocces_type,
260
+ ],
261
+ outputs=[output_image],
262
+ )
diffusion_webui/diffusion_models/img2img_app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from diffusers import StableDiffusionImg2ImgPipeline
4
+ from PIL import Image
5
+
6
+ from diffusion_webui.utils.model_list import stable_model_list
7
+ from diffusion_webui.utils.scheduler_list import (
8
+ SCHEDULER_MAPPING,
9
+ get_scheduler,
10
+ )
11
+
12
+
13
+ class StableDiffusionImage2ImageGenerator:
14
+ def __init__(self):
15
+ self.pipe = None
16
+
17
+ def load_model(self, stable_model_path, scheduler):
18
+ if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
19
+ self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
20
+ stable_model_path, safety_checker=None, torch_dtype=torch.float16
21
+ )
22
+
23
+ self.pipe.model_name = stable_model_path
24
+ self.pipe.scheduler_name = scheduler
25
+ self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
26
+ self.pipe.to("cuda")
27
+ self.pipe.enable_xformers_memory_efficient_attention()
28
+
29
+ return self.pipe
30
+
31
+ def generate_image(
32
+ self,
33
+ image_path: str,
34
+ stable_model_path: str,
35
+ prompt: str,
36
+ negative_prompt: str,
37
+ num_images_per_prompt: int,
38
+ scheduler: str,
39
+ guidance_scale: int,
40
+ num_inference_step: int,
41
+ seed_generator=0,
42
+ ):
43
+ pipe = self.load_model(
44
+ stable_model_path=stable_model_path,
45
+ scheduler=scheduler,
46
+ )
47
+
48
+ if seed_generator == 0:
49
+ random_seed = torch.randint(0, 1000000, (1,))
50
+ generator = torch.manual_seed(random_seed)
51
+ else:
52
+ generator = torch.manual_seed(seed_generator)
53
+
54
+ image = Image.open(image_path)
55
+ images = pipe(
56
+ prompt,
57
+ image=image,
58
+ negative_prompt=negative_prompt,
59
+ num_images_per_prompt=num_images_per_prompt,
60
+ num_inference_steps=num_inference_step,
61
+ guidance_scale=guidance_scale,
62
+ generator=generator,
63
+ ).images
64
+
65
+ return images
66
+
67
+ def app():
68
+ with gr.Blocks():
69
+ with gr.Row():
70
+ with gr.Column():
71
+ image2image_image_file = gr.Image(
72
+ type="filepath", label="Image"
73
+ ).style(height=260)
74
+
75
+ image2image_prompt = gr.Textbox(
76
+ lines=1,
77
+ placeholder="Prompt",
78
+ show_label=False,
79
+ )
80
+
81
+ image2image_negative_prompt = gr.Textbox(
82
+ lines=1,
83
+ placeholder="Negative Prompt",
84
+ show_label=False,
85
+ )
86
+
87
+ with gr.Row():
88
+ with gr.Column():
89
+ image2image_model_path = gr.Dropdown(
90
+ choices=stable_model_list,
91
+ value=stable_model_list[0],
92
+ label="Stable Model Id",
93
+ )
94
+
95
+ image2image_guidance_scale = gr.Slider(
96
+ minimum=0.1,
97
+ maximum=15,
98
+ step=0.1,
99
+ value=7.5,
100
+ label="Guidance Scale",
101
+ )
102
+ image2image_num_inference_step = gr.Slider(
103
+ minimum=1,
104
+ maximum=100,
105
+ step=1,
106
+ value=50,
107
+ label="Num Inference Step",
108
+ )
109
+ with gr.Row():
110
+ with gr.Column():
111
+ image2image_scheduler = gr.Dropdown(
112
+ choices=list(SCHEDULER_MAPPING.keys()),
113
+ value=list(SCHEDULER_MAPPING.keys())[0],
114
+ label="Scheduler",
115
+ )
116
+ image2image_num_images_per_prompt = gr.Slider(
117
+ minimum=1,
118
+ maximum=4,
119
+ step=1,
120
+ value=1,
121
+ label="Number Of Images",
122
+ )
123
+
124
+ image2image_seed_generator = gr.Slider(
125
+ minimum=0,
126
+ maximum=1000000,
127
+ step=1,
128
+ value=0,
129
+ label="Seed(0 for random)",
130
+ )
131
+
132
+ image2image_predict_button = gr.Button(value="Generator")
133
+
134
+ with gr.Column():
135
+ output_image = gr.Gallery(
136
+ label="Generated images",
137
+ show_label=False,
138
+ elem_id="gallery",
139
+ ).style(grid=(1, 2))
140
+
141
+ image2image_predict_button.click(
142
+ fn=StableDiffusionImage2ImageGenerator().generate_image,
143
+ inputs=[
144
+ image2image_image_file,
145
+ image2image_model_path,
146
+ image2image_prompt,
147
+ image2image_negative_prompt,
148
+ image2image_num_images_per_prompt,
149
+ image2image_scheduler,
150
+ image2image_guidance_scale,
151
+ image2image_num_inference_step,
152
+ image2image_seed_generator,
153
+ ],
154
+ outputs=[output_image],
155
+ )
diffusion_webui/diffusion_models/inpaint_app.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from diffusers import DiffusionPipeline
4
+
5
+ from diffusion_webui.utils.model_list import stable_inpiant_model_list
6
+
7
+
8
+ class StableDiffusionInpaintGenerator:
9
+ def __init__(self):
10
+ self.pipe = None
11
+
12
+ def load_model(self, stable_model_path):
13
+ if self.pipe is None or self.pipe.model_name != stable_model_path:
14
+ self.pipe = DiffusionPipeline.from_pretrained(
15
+ stable_model_path, revision="fp16", torch_dtype=torch.float16
16
+ )
17
+ self.pipe.to("cuda")
18
+ self.pipe.enable_xformers_memory_efficient_attention()
19
+ self.pipe.model_name = stable_model_path
20
+
21
+
22
+ return self.pipe
23
+
24
+ def generate_image(
25
+ self,
26
+ pil_image: str,
27
+ stable_model_path: str,
28
+ prompt: str,
29
+ negative_prompt: str,
30
+ num_images_per_prompt: int,
31
+ guidance_scale: int,
32
+ num_inference_step: int,
33
+ seed_generator=0,
34
+ ):
35
+ image = pil_image["image"].convert("RGB").resize((512, 512))
36
+ mask_image = pil_image["mask"].convert("RGB").resize((512, 512))
37
+ pipe = self.load_model(stable_model_path)
38
+
39
+ if seed_generator == 0:
40
+ random_seed = torch.randint(0, 1000000, (1,))
41
+ generator = torch.manual_seed(random_seed)
42
+ else:
43
+ generator = torch.manual_seed(seed_generator)
44
+
45
+ output = pipe(
46
+ prompt=prompt,
47
+ image=image,
48
+ mask_image=mask_image,
49
+ negative_prompt=negative_prompt,
50
+ num_images_per_prompt=num_images_per_prompt,
51
+ num_inference_steps=num_inference_step,
52
+ guidance_scale=guidance_scale,
53
+ generator=generator,
54
+ ).images
55
+
56
+ return output
57
+
58
+ def app():
59
+ with gr.Blocks():
60
+ with gr.Row():
61
+ with gr.Column():
62
+ stable_diffusion_inpaint_image_file = gr.Image(
63
+ source="upload",
64
+ tool="sketch",
65
+ elem_id="image_upload",
66
+ type="pil",
67
+ label="Upload",
68
+ ).style(height=260)
69
+
70
+ stable_diffusion_inpaint_prompt = gr.Textbox(
71
+ lines=1,
72
+ placeholder="Prompt",
73
+ show_label=False,
74
+ )
75
+
76
+ stable_diffusion_inpaint_negative_prompt = gr.Textbox(
77
+ lines=1,
78
+ placeholder="Negative Prompt",
79
+ show_label=False,
80
+ )
81
+ stable_diffusion_inpaint_model_id = gr.Dropdown(
82
+ choices=stable_inpiant_model_list,
83
+ value=stable_inpiant_model_list[0],
84
+ label="Inpaint Model Id",
85
+ )
86
+ with gr.Row():
87
+ with gr.Column():
88
+ stable_diffusion_inpaint_guidance_scale = gr.Slider(
89
+ minimum=0.1,
90
+ maximum=15,
91
+ step=0.1,
92
+ value=7.5,
93
+ label="Guidance Scale",
94
+ )
95
+
96
+ stable_diffusion_inpaint_num_inference_step = (
97
+ gr.Slider(
98
+ minimum=1,
99
+ maximum=100,
100
+ step=1,
101
+ value=50,
102
+ label="Num Inference Step",
103
+ )
104
+ )
105
+
106
+ with gr.Row():
107
+ with gr.Column():
108
+ stable_diffusion_inpiant_num_images_per_prompt = gr.Slider(
109
+ minimum=1,
110
+ maximum=4,
111
+ step=1,
112
+ value=1,
113
+ label="Number Of Images",
114
+ )
115
+ stable_diffusion_inpaint_seed_generator = (
116
+ gr.Slider(
117
+ minimum=0,
118
+ maximum=1000000,
119
+ step=1,
120
+ value=0,
121
+ label="Seed(0 for random)",
122
+ )
123
+ )
124
+
125
+ stable_diffusion_inpaint_predict = gr.Button(
126
+ value="Generator"
127
+ )
128
+
129
+ with gr.Column():
130
+ output_image = gr.Gallery(
131
+ label="Generated images",
132
+ show_label=False,
133
+ elem_id="gallery",
134
+ ).style(grid=(1, 2))
135
+
136
+ stable_diffusion_inpaint_predict.click(
137
+ fn=StableDiffusionInpaintGenerator().generate_image,
138
+ inputs=[
139
+ stable_diffusion_inpaint_image_file,
140
+ stable_diffusion_inpaint_model_id,
141
+ stable_diffusion_inpaint_prompt,
142
+ stable_diffusion_inpaint_negative_prompt,
143
+ stable_diffusion_inpiant_num_images_per_prompt,
144
+ stable_diffusion_inpaint_guidance_scale,
145
+ stable_diffusion_inpaint_num_inference_step,
146
+ stable_diffusion_inpaint_seed_generator,
147
+ ],
148
+ outputs=[output_image],
149
+ )
diffusion_webui/diffusion_models/text2img_app.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from diffusers import StableDiffusionPipeline,DiffusionPipeline
4
+
5
+ from diffusion_webui.utils.model_list import stable_model_list
6
+ from diffusion_webui.utils.scheduler_list import (
7
+ SCHEDULER_MAPPING,
8
+ get_scheduler,
9
+ )
10
+
11
+
12
+ class StableDiffusionText2ImageGenerator:
13
+ def __init__(self):
14
+ self.pipe = None
15
+
16
+ def load_model(
17
+ self,
18
+ stable_model_path,
19
+ scheduler,
20
+ ):
21
+ if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
22
+ if stable_model_path == "stabilityai/stable-diffusion-xl-base-0.9":
23
+ self.pipe = DiffusionPipeline.from_pretrained(
24
+ stable_model_path, safety_checker=None, torch_dtype=torch.float16
25
+ )
26
+ else:
27
+ self.pipe = StableDiffusionPipeline.from_pretrained(
28
+ stable_model_path, safety_checker=None, torch_dtype=torch.float16
29
+ )
30
+
31
+ self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
32
+ self.pipe.to("cuda")
33
+ self.pipe.enable_xformers_memory_efficient_attention()
34
+ self.pipe.model_name = stable_model_path
35
+ self.pipe.scheduler_name = scheduler
36
+
37
+ return self.pipe
38
+
39
+ def generate_image(
40
+ self,
41
+ stable_model_path: str,
42
+ prompt: str,
43
+ negative_prompt: str,
44
+ num_images_per_prompt: int,
45
+ scheduler: str,
46
+ guidance_scale: int,
47
+ num_inference_step: int,
48
+ height: int,
49
+ width: int,
50
+ seed_generator=0,
51
+ ):
52
+ pipe = self.load_model(
53
+ stable_model_path=stable_model_path,
54
+ scheduler=scheduler,
55
+ )
56
+ if seed_generator == 0:
57
+ random_seed = torch.randint(0, 1000000, (1,))
58
+ generator = torch.manual_seed(random_seed)
59
+ else:
60
+ generator = torch.manual_seed(seed_generator)
61
+
62
+ images = pipe(
63
+ prompt=prompt,
64
+ height=height,
65
+ width=width,
66
+ negative_prompt=negative_prompt,
67
+ num_images_per_prompt=num_images_per_prompt,
68
+ num_inference_steps=num_inference_step,
69
+ guidance_scale=guidance_scale,
70
+ generator=generator,
71
+ ).images
72
+
73
+ return images
74
+
75
+ def app():
76
+ with gr.Blocks():
77
+ with gr.Row():
78
+ with gr.Column():
79
+ text2image_prompt = gr.Textbox(
80
+ lines=1,
81
+ placeholder="Prompt",
82
+ show_label=False,
83
+ )
84
+
85
+ text2image_negative_prompt = gr.Textbox(
86
+ lines=1,
87
+ placeholder="Negative Prompt",
88
+ show_label=False,
89
+ )
90
+ with gr.Row():
91
+ with gr.Column():
92
+ text2image_model_path = gr.Dropdown(
93
+ choices=stable_model_list,
94
+ value=stable_model_list[0],
95
+ label="Text-Image Model Id",
96
+ )
97
+
98
+ text2image_guidance_scale = gr.Slider(
99
+ minimum=0.1,
100
+ maximum=15,
101
+ step=0.1,
102
+ value=7.5,
103
+ label="Guidance Scale",
104
+ )
105
+
106
+ text2image_num_inference_step = gr.Slider(
107
+ minimum=1,
108
+ maximum=100,
109
+ step=1,
110
+ value=50,
111
+ label="Num Inference Step",
112
+ )
113
+ text2image_num_images_per_prompt = gr.Slider(
114
+ minimum=1,
115
+ maximum=4,
116
+ step=1,
117
+ value=1,
118
+ label="Number Of Images",
119
+ )
120
+ with gr.Row():
121
+ with gr.Column():
122
+ text2image_scheduler = gr.Dropdown(
123
+ choices=list(SCHEDULER_MAPPING.keys()),
124
+ value=list(SCHEDULER_MAPPING.keys())[0],
125
+ label="Scheduler",
126
+ )
127
+
128
+ text2image_height = gr.Slider(
129
+ minimum=128,
130
+ maximum=1280,
131
+ step=32,
132
+ value=512,
133
+ label="Image Height",
134
+ )
135
+
136
+ text2image_width = gr.Slider(
137
+ minimum=128,
138
+ maximum=1280,
139
+ step=32,
140
+ value=512,
141
+ label="Image Width",
142
+ )
143
+ text2image_seed_generator = gr.Slider(
144
+ label="Seed(0 for random)",
145
+ minimum=0,
146
+ maximum=1000000,
147
+ value=0,
148
+ )
149
+ text2image_predict = gr.Button(value="Generator")
150
+
151
+ with gr.Column():
152
+ output_image = gr.Gallery(
153
+ label="Generated images",
154
+ show_label=False,
155
+ elem_id="gallery",
156
+ ).style(grid=(1, 2), height=200)
157
+
158
+ text2image_predict.click(
159
+ fn=StableDiffusionText2ImageGenerator().generate_image,
160
+ inputs=[
161
+ text2image_model_path,
162
+ text2image_prompt,
163
+ text2image_negative_prompt,
164
+ text2image_num_images_per_prompt,
165
+ text2image_scheduler,
166
+ text2image_guidance_scale,
167
+ text2image_num_inference_step,
168
+ text2image_height,
169
+ text2image_width,
170
+ text2image_seed_generator,
171
+ ],
172
+ outputs=output_image,
173
+ )
diffusion_webui/utils/__init__.py ADDED
File without changes
diffusion_webui/utils/data_utils.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+
3
+
4
+ def image_grid(imgs, rows, cols):
5
+ assert len(imgs) == rows * cols
6
+
7
+ w, h = imgs[0].size
8
+ grid = Image.new("RGB", size=(cols * w, rows * h))
9
+
10
+ for i, img in enumerate(imgs):
11
+ grid.paste(img, box=(i % cols * w, i // cols * h))
12
+ return grid
diffusion_webui/utils/model_list.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ stable_model_list = [
2
+ "runwayml/stable-diffusion-v1-5",
3
+ "SG161222/Realistic_Vision_V2.0"
4
+ ]
5
+
6
+ stable_inpiant_model_list = [
7
+ "stabilityai/stable-diffusion-2-inpainting",
8
+ "runwayml/stable-diffusion-inpainting",
9
+ ]
10
+
11
+ controlnet_model_list = [
12
+ "lllyasviel/control_v11p_sd15_canny",
13
+ "lllyasviel/control_v11f1p_sd15_depth",
14
+ "lllyasviel/control_v11p_sd15_openpose",
15
+ "lllyasviel/control_v11p_sd15_scribble",
16
+ "lllyasviel/control_v11p_sd15_mlsd",
17
+ "lllyasviel/control_v11e_sd15_shuffle",
18
+ "lllyasviel/control_v11e_sd15_ip2p",
19
+ "lllyasviel/control_v11p_sd15_lineart",
20
+ "lllyasviel/control_v11p_sd15s2_lineart_anime",
21
+ "lllyasviel/control_v11p_sd15_softedge",
22
+ ]
diffusion_webui/utils/preprocces_utils.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from controlnet_aux import (
2
+ CannyDetector,
3
+ ContentShuffleDetector,
4
+ HEDdetector,
5
+ LineartAnimeDetector,
6
+ LineartDetector,
7
+ MediapipeFaceDetector,
8
+ MidasDetector,
9
+ MLSDdetector,
10
+ NormalBaeDetector,
11
+ OpenposeDetector,
12
+ PidiNetDetector,
13
+ SamDetector,
14
+ ZoeDetector,
15
+ )
16
+
17
+ import numpy as np
18
+ import cv2
19
+
20
+ def pad64(x):
21
+ return int(np.ceil(float(x) / 64.0) * 64 - x)
22
+
23
+ def HWC3(x):
24
+ assert x.dtype == np.uint8
25
+ if x.ndim == 2:
26
+ x = x[:, :, None]
27
+ assert x.ndim == 3
28
+ H, W, C = x.shape
29
+ assert C == 1 or C == 3 or C == 4
30
+ if C == 3:
31
+ return x
32
+ if C == 1:
33
+ return np.concatenate([x, x, x], axis=2)
34
+ if C == 4:
35
+ color = x[:, :, 0:3].astype(np.float32)
36
+ alpha = x[:, :, 3:4].astype(np.float32) / 255.0
37
+ y = color * alpha + 255.0 * (1.0 - alpha)
38
+ y = y.clip(0, 255).astype(np.uint8)
39
+ return y
40
+
41
+ def safer_memory(x):
42
+ return np.ascontiguousarray(x.copy()).copy()
43
+
44
+
45
+ def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
46
+ if skip_hwc3:
47
+ img = input_image
48
+ else:
49
+ img = HWC3(input_image)
50
+
51
+ H_raw, W_raw, _ = img.shape
52
+ k = float(resolution) / float(min(H_raw, W_raw))
53
+ interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
54
+ H_target = int(np.round(float(H_raw) * k))
55
+ W_target = int(np.round(float(W_raw) * k))
56
+ img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
57
+ H_pad, W_pad = pad64(H_target), pad64(W_target)
58
+ img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
59
+
60
+ def remove_pad(x):
61
+ return safer_memory(x[:H_target, :W_target])
62
+
63
+ return safer_memory(img_padded), remove_pad
64
+
65
+
66
+ def scribble_xdog(img, res=512, thr_a=32, **kwargs):
67
+ img, remove_pad = resize_image_with_pad(img, res)
68
+ g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
69
+ g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
70
+ dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
71
+ result = np.zeros_like(img, dtype=np.uint8)
72
+ result[2 * (255 - dog) > thr_a] = 255
73
+ return remove_pad(result), True
74
+
75
+ def none_preprocces(image_path:str):
76
+ return Image.open(image_path)
77
+
78
+ PREPROCCES_DICT = {
79
+ "Hed": HEDdetector.from_pretrained("lllyasviel/Annotators"),
80
+ "Midas": MidasDetector.from_pretrained("lllyasviel/Annotators"),
81
+ "MLSD": MLSDdetector.from_pretrained("lllyasviel/Annotators"),
82
+ "Openpose": OpenposeDetector.from_pretrained("lllyasviel/Annotators"),
83
+ "PidiNet": PidiNetDetector.from_pretrained("lllyasviel/Annotators"),
84
+ "NormalBae": NormalBaeDetector.from_pretrained("lllyasviel/Annotators"),
85
+ "Lineart": LineartDetector.from_pretrained("lllyasviel/Annotators"),
86
+ "LineartAnime": LineartAnimeDetector.from_pretrained(
87
+ "lllyasviel/Annotators"
88
+ ),
89
+ "Zoe": ZoeDetector.from_pretrained("lllyasviel/Annotators"),
90
+ "Canny": CannyDetector(),
91
+ "ContentShuffle": ContentShuffleDetector(),
92
+ "MediapipeFace": MediapipeFaceDetector(),
93
+ "ScribbleXDOG": scribble_xdog,
94
+ "None": none_preprocces
95
+ }
96
+
diffusion_webui/utils/scheduler_list.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import (
2
+ DDIMScheduler,
3
+ DDPMScheduler,
4
+ DEISMultistepScheduler,
5
+ DPMSolverMultistepScheduler,
6
+ DPMSolverSinglestepScheduler,
7
+ EulerAncestralDiscreteScheduler,
8
+ EulerDiscreteScheduler,
9
+ HeunDiscreteScheduler,
10
+ KDPM2AncestralDiscreteScheduler,
11
+ KDPM2DiscreteScheduler,
12
+ PNDMScheduler,
13
+ UniPCMultistepScheduler,
14
+ )
15
+
16
+ SCHEDULER_MAPPING = {
17
+ "DDIM": DDIMScheduler,
18
+ "DDPMScheduler": DDPMScheduler,
19
+ "DEISMultistep": DEISMultistepScheduler,
20
+ "DPMSolverMultistep": DPMSolverMultistepScheduler,
21
+ "DPMSolverSinglestep": DPMSolverSinglestepScheduler,
22
+ "EulerAncestralDiscrete": EulerAncestralDiscreteScheduler,
23
+ "EulerDiscrete": EulerDiscreteScheduler,
24
+ "HeunDiscrete": HeunDiscreteScheduler,
25
+ "KDPM2AncestralDiscrete": KDPM2AncestralDiscreteScheduler,
26
+ "KDPM2Discrete": KDPM2DiscreteScheduler,
27
+ "PNDMScheduler": PNDMScheduler,
28
+ "UniPCMultistep": UniPCMultistepScheduler,
29
+ }
30
+
31
+
32
+ def get_scheduler(pipe, scheduler):
33
+ if scheduler in SCHEDULER_MAPPING:
34
+ SchedulerClass = SCHEDULER_MAPPING[scheduler]
35
+ pipe.scheduler = SchedulerClass.from_config(pipe.scheduler.config)
36
+ else:
37
+ raise ValueError(f"Invalid scheduler name {scheduler}")
38
+
39
+ return pipe
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ transformers
2
+ bitsandbytes==0.35.0
3
+ xformers
4
+ controlnet_aux
5
+ diffusers==0.18.1
6
+ imageio
7
+ gradio
8
+ controlnet_aux
9
+ mediapipe