|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
|
|
|
|
|
|
learn = load_learner('persimmon_model.pkl') |
|
|
|
|
|
categories = ('persimmon', 'tomato') |
|
|
|
def classify_image(img): |
|
pred,idx,probs = learn.predict(img) |
|
return dict(zip(categories, map(float,probs))) |
|
|
|
image = gr.inputs.Image(shape=(192, 192)) |
|
label = gr.outputs.Label() |
|
examples = ['persimmon.jpg', 'tomato.jpg', 'persimmontree.jpg', |
|
'tomatoplant.jpg', 'cat.jpg', 'tomatoplant2.jpg'] |
|
|
|
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, |
|
title="Persimmon or Tomato?", description="Trained on only persimmon and tomato images auto-retrieved from a DDG search using resnet18. Provide an image or select from one below.") |
|
intf.launch(inline=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|