Spaces:
Runtime error
Runtime error
File size: 7,265 Bytes
0291473 d0713cc 0291473 4af33c5 0291473 64ba1a9 3d0d529 0291473 3d0d529 7c70572 0291473 24b2aa0 3d0d529 24b2aa0 3d0d529 0291473 a43e51c 0291473 3d0d529 24b4874 9b26173 5d8dc18 3d0d529 ea2e854 3d0d529 ea2e854 b7ab792 3d0d529 f7ae953 083778b 3d0d529 3711db1 3d0d529 2342079 3d0d529 9adeb7d 3d0d529 5a472ab 9adeb7d 3d0d529 f29778b 3d0d529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
from diffusers import AudioLDMControlNetPipeline, ControlNetModel
import os
from pretty_midi import PrettyMIDI
from tempfile import _TemporaryFileWrapper
import torch
import torchaudio
import logging
logging.basicConfig(level=logging.INFO)
SAMPLE_RATE = 16000
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
controlnet = ControlNetModel.from_pretrained(
"lauraibnz/midi-audioldm-v2", torch_dtype=torch_dtype
)
pipe = AudioLDMControlNetPipeline.from_pretrained(
"cvssp/audioldm-m-full", controlnet=controlnet, torch_dtype=torch_dtype
)
pipe = pipe.to(device)
generator = torch.Generator(device)
def predict(
midi_file=None,
midi_synth=None,
prompt="",
neg_prompt="",
duration=None,
seed=0,
cond=1,
inf=20,
guidance_scale=2.5,
guess=False,
):
try:
if isinstance(midi_file, _TemporaryFileWrapper):
midi_file = midi_file.name
midi = PrettyMIDI(midi_file)
if not duration or duration == 0:
duration = midi_synth[1].shape[0] / SAMPLE_RATE
if not prompt and not neg_prompt:
guess_mode = True
audio = pipe(
prompt,
negative_prompt=neg_prompt,
midi=midi,
audio_length_in_s=duration,
num_inference_steps=inf,
controlnet_conditioning_scale=float(cond),
guess_mode=guess,
generator=generator.manual_seed(int(seed)),
guidance_scale=float(guidance_scale),
)
return (SAMPLE_RATE, audio.audios.T)
except Exception as e:
logging.error(f"Error in predict function: {str(e)}")
raise gr.Error(f"An error occurred: {str(e)}")
def synthesize(midi_file=None):
if isinstance(midi_file, _TemporaryFileWrapper):
midi_file = midi_file.name
midi = PrettyMIDI(midi_file)
midi_synth = midi.synthesize(fs=SAMPLE_RATE)
midi_synth = midi_synth.reshape(midi_synth.shape[0], 1)
return (SAMPLE_RATE, midi_synth)
def run_example(
midi_file=None,
prompt="",
neg_prompt="",
duration=None,
seed=0,
cond=1,
inf=20,
guidance_scale=2.5,
guess=False,
):
midi_synth = synthesize(midi_file)
gen_audio = predict(
midi_file,
midi_synth,
prompt,
neg_prompt,
duration,
seed,
cond,
inf,
guidance_scale,
guess,
)
return midi_synth, gen_audio
with gr.Blocks(
title="🎹 MIDI-AudioLDM",
theme=gr.themes.Base(
text_size=gr.themes.sizes.text_md, font=[gr.themes.GoogleFont("Nunito Sans")]
),
) as demo:
gr.HTML(
"""
<h1 align="center"; size="16">🎹 MIDI-AudioLDM </h1>
"""
)
gr.Markdown(
"""
MIDI-AudioLDM is a MIDI-conditioned text-to-audio model based on the project [AudioLDM](https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation). The model has been conditioned using the ControlNet architecture and has been developed within Hugging Face’s [🧨 Diffusers](https://huggingface.co/docs/diffusers/) framework. Once trained, MIDI-AudioLDM accepts a MIDI file and a text prompt as input and returns an audio file, which is an interpretation of the MIDI based on the given text description. This enables detailed control over different musical aspects such as notes, mood and timbre.
"""
)
with gr.Column(variant="panel"):
midi = gr.File(label="midi file", file_types=[".mid"])
prompt = gr.Textbox(
label="prompt",
info="Enter a descriptive text prompt to guide the audio generation.",
)
with gr.Row():
with gr.Column():
midi_synth = gr.Audio(label="synthesized midi")
midi.upload(synthesize, midi, midi_synth)
with gr.Column():
audio = gr.Audio(label="generated audio")
with gr.Accordion("Advanced Settings", open=False):
duration = gr.Slider(
0,
20,
step=2.5,
label="duration",
info="Modify the duration in seconds of the output audio file. If not set it will be determined by the MIDI file.",
)
inf = gr.Slider(
0,
100,
value=40,
step=1,
label="inference steps",
info="Edit the number of denoising steps. A larger number usually leads to higher quality but slower results.",
)
guidance_scale = gr.Slider(
0,
4,
value=2.5,
step=0.5,
label="guidance scale",
info="Modify the guidance scale. The higher the value the more linked the generated audio to the text prompt, sometimes at the expense of lower quality.",
)
neg_prompt = gr.Textbox(
label="negative prompt",
info="Optionally enter a negative text prompt not to guide the audio generation.",
)
seed = gr.Number(
value=48,
label="random seed",
info="Change the random seed for a different generation result.",
)
cond = gr.Slider(
0.0,
1.0,
value=1.0,
step=0.1,
label="conditioning scale",
info="Choose a value between 0 and 1. The larger the more it will take the conditioning into account. Lower values are recommended for more creative prompts.",
)
guess = gr.Checkbox(
label="guess mode",
info="Optionally select guess mode. If so, the model will try to recognize the content of the MIDI without the need of a text prompt.",
)
btn = gr.Button("Generate")
btn.click(
predict,
inputs=[
midi,
midi_synth,
prompt,
neg_prompt,
duration,
seed,
cond,
inf,
guidance_scale,
guess,
],
outputs=[audio],
)
gr.Examples(
examples=[
["S00.mid", "piano", "", 10, 48, 1.0, 20, 2.5, False],
["S00.mid", "violin", "", 10, 48, 1.0, 20, 2.5, False],
[
"S00.mid",
"woman singing, studio recording",
"noise",
10,
48,
1.0,
20,
2.5,
False,
],
["S00.mid", "jazz band, clean", "noise", 10, 48, 1.0, 20, 2.5, False],
["S00.mid", "choir", "noise, percussion", 10, 48, 1.0, 20, 2.5, False],
],
inputs=[
midi,
prompt,
neg_prompt,
duration,
seed,
cond,
inf,
guidance_scale,
guess,
],
fn=run_example,
outputs=[midi_synth, audio],
cache_examples=True,
)
demo.launch(show_error=True)
|