ford442 commited on
Commit
28a7ae9
·
verified ·
1 Parent(s): 001c58c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -114,7 +114,7 @@ def load_and_prepare_model(model_id):
114
  #vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
115
  #vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
116
  #vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
117
- #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
118
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
119
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
120
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
@@ -141,6 +141,7 @@ def load_and_prepare_model(model_id):
141
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
143
  )
 
144
  #pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
145
  pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
146
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
@@ -160,7 +161,7 @@ def load_and_prepare_model(model_id):
160
 
161
  #apply_hidiffusion(pipe)
162
 
163
- #pipe.unet.set_default_attn_processor()
164
  pipe.vae.set_default_attn_processor()
165
 
166
  print(f'Pipeline: ')
@@ -218,7 +219,7 @@ def uploadNote():
218
  f.write(f"Use Model Dtype: no \n")
219
  f.write(f"Model Scheduler: Euler_a custom before cuda \n")
220
  f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
221
- f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
222
  f.write(f"Model HiDiffusion OFF \n")
223
  f.write(f"Model do_resize OFF \n")
224
  upload_to_ftp(filename)
 
114
  #vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
115
  #vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
116
  #vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
117
+ #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
118
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
119
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
120
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
 
141
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
143
  )
144
+ pipe.unet=UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='unet').to(torch.bfloat16)
145
  #pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
146
  pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
147
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
 
161
 
162
  #apply_hidiffusion(pipe)
163
 
164
+ pipe.unet.set_default_attn_processor()
165
  pipe.vae.set_default_attn_processor()
166
 
167
  print(f'Pipeline: ')
 
219
  f.write(f"Use Model Dtype: no \n")
220
  f.write(f"Model Scheduler: Euler_a custom before cuda \n")
221
  f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
222
+ f.write(f"Model UNET: default ford442/RealVisXL_V5.0_FP64 to bfloat before cuda then attn_proc \n")
223
  f.write(f"Model HiDiffusion OFF \n")
224
  f.write(f"Model do_resize OFF \n")
225
  upload_to_ftp(filename)