Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -114,7 +114,7 @@ def load_and_prepare_model(model_id):
|
|
114 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
115 |
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
116 |
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
117 |
-
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.
|
118 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
119 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
@@ -141,6 +141,7 @@ def load_and_prepare_model(model_id):
|
|
141 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
142 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
143 |
)
|
|
|
144 |
#pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
145 |
pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
146 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
@@ -160,7 +161,7 @@ def load_and_prepare_model(model_id):
|
|
160 |
|
161 |
#apply_hidiffusion(pipe)
|
162 |
|
163 |
-
|
164 |
pipe.vae.set_default_attn_processor()
|
165 |
|
166 |
print(f'Pipeline: ')
|
@@ -218,7 +219,7 @@ def uploadNote():
|
|
218 |
f.write(f"Use Model Dtype: no \n")
|
219 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
220 |
f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
|
221 |
-
f.write(f"Model UNET: default ford442/RealVisXL_V5.
|
222 |
f.write(f"Model HiDiffusion OFF \n")
|
223 |
f.write(f"Model do_resize OFF \n")
|
224 |
upload_to_ftp(filename)
|
|
|
114 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
115 |
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
116 |
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
117 |
+
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
118 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
119 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
|
|
141 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
142 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
143 |
)
|
144 |
+
pipe.unet=UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='unet').to(torch.bfloat16)
|
145 |
#pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
146 |
pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
147 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
|
|
161 |
|
162 |
#apply_hidiffusion(pipe)
|
163 |
|
164 |
+
pipe.unet.set_default_attn_processor()
|
165 |
pipe.vae.set_default_attn_processor()
|
166 |
|
167 |
print(f'Pipeline: ')
|
|
|
219 |
f.write(f"Use Model Dtype: no \n")
|
220 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
221 |
f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
|
222 |
+
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_FP64 to bfloat before cuda then attn_proc \n")
|
223 |
f.write(f"Model HiDiffusion OFF \n")
|
224 |
f.write(f"Model do_resize OFF \n")
|
225 |
upload_to_ftp(filename)
|