Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ FTP_PASS = "GoogleBez12!"
|
|
34 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
35 |
|
36 |
DESCRIPTIONXX = """
|
37 |
-
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester
|
38 |
"""
|
39 |
|
40 |
examples = [
|
@@ -78,7 +78,42 @@ STYLE_NAMES = list(styles.keys())
|
|
78 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
79 |
|
80 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def load_and_prepare_model():
|
83 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
|
84 |
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
@@ -100,7 +135,7 @@ def load_and_prepare_model():
|
|
100 |
return pipe
|
101 |
|
102 |
# Preload and compile both models
|
103 |
-
pipe =load_and_prepare_model()
|
104 |
|
105 |
MAX_SEED = np.iinfo(np.int32).max
|
106 |
|
@@ -172,6 +207,7 @@ def generate_30(
|
|
172 |
"num_inference_steps": num_inference_steps,
|
173 |
"generator": generator,
|
174 |
"output_type": "pil",
|
|
|
175 |
}
|
176 |
if use_resolution_binning:
|
177 |
options["use_resolution_binning"] = True
|
@@ -212,6 +248,7 @@ def generate_60(
|
|
212 |
"num_inference_steps": num_inference_steps,
|
213 |
"generator": generator,
|
214 |
"output_type": "pil",
|
|
|
215 |
}
|
216 |
if use_resolution_binning:
|
217 |
options["use_resolution_binning"] = True
|
@@ -252,6 +289,7 @@ def generate_90(
|
|
252 |
"num_inference_steps": num_inference_steps,
|
253 |
"generator": generator,
|
254 |
"output_type": "pil",
|
|
|
255 |
}
|
256 |
if use_resolution_binning:
|
257 |
options["use_resolution_binning"] = True
|
|
|
34 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
35 |
|
36 |
DESCRIPTIONXX = """
|
37 |
+
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester C) ⚡⚡⚡⚡
|
38 |
"""
|
39 |
|
40 |
examples = [
|
|
|
78 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
79 |
|
80 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
81 |
+
|
82 |
+
def scheduler_swap_callback(pipeline, step_index, timestep):
|
83 |
+
# adjust the batch_size of prompt_embeds according to guidance_scale
|
84 |
+
if step_index == int(pipeline.num_timesteps * 0.1):
|
85 |
+
print("-- swapping scheduler --")
|
86 |
+
# pipeline.scheduler = euler_scheduler
|
87 |
+
torch.set_float32_matmul_precision("high")
|
88 |
+
# pipe.vae = vae_b
|
89 |
+
torch.backends.cudnn.allow_tf32 = True
|
90 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
91 |
+
# torch.backends.cudnn.deterministic = True
|
92 |
+
torch.backends.cuda.preferred_blas_library="cublaslt"
|
93 |
+
if step_index == int(pipeline.num_timesteps * 0.5):
|
94 |
+
# torch.set_float32_matmul_precision("medium")
|
95 |
+
pipe.unet.to(torch.float64)
|
96 |
+
# pipe.guidance_scale=1.0
|
97 |
+
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
98 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
99 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
|
100 |
+
if step_index == int(pipeline.num_timesteps * 0.9):
|
101 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
102 |
+
torch.backends.cudnn.allow_tf32 = False
|
103 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
104 |
+
torch.set_float32_matmul_precision("highest")
|
105 |
+
pipe.unet.to(torch.bfloat16)
|
106 |
+
# pipe.vae = vae_a
|
107 |
+
# pipe.unet = unet_a
|
108 |
+
# torch.backends.cudnn.deterministic = False
|
109 |
+
print("-- swapping scheduler --")
|
110 |
+
# pipeline.scheduler = heun_scheduler
|
111 |
+
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
112 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
|
113 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
|
114 |
+
return
|
115 |
+
|
116 |
+
|
117 |
def load_and_prepare_model():
|
118 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
|
119 |
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
|
|
135 |
return pipe
|
136 |
|
137 |
# Preload and compile both models
|
138 |
+
pipe = load_and_prepare_model()
|
139 |
|
140 |
MAX_SEED = np.iinfo(np.int32).max
|
141 |
|
|
|
207 |
"num_inference_steps": num_inference_steps,
|
208 |
"generator": generator,
|
209 |
"output_type": "pil",
|
210 |
+
"callback_on_step_end": scheduler_swap_callback
|
211 |
}
|
212 |
if use_resolution_binning:
|
213 |
options["use_resolution_binning"] = True
|
|
|
248 |
"num_inference_steps": num_inference_steps,
|
249 |
"generator": generator,
|
250 |
"output_type": "pil",
|
251 |
+
"callback_on_step_end": scheduler_swap_callback
|
252 |
}
|
253 |
if use_resolution_binning:
|
254 |
options["use_resolution_binning"] = True
|
|
|
289 |
"num_inference_steps": num_inference_steps,
|
290 |
"generator": generator,
|
291 |
"output_type": "pil",
|
292 |
+
"callback_on_step_end": scheduler_swap_callback
|
293 |
}
|
294 |
if use_resolution_binning:
|
295 |
options["use_resolution_binning"] = True
|