Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -202,7 +202,7 @@ def load_and_prepare_model():
|
|
202 |
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
|
203 |
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={'epilogue_fusion': True, 'shape_padding': True}) #.to(device=device, dtype=torch.bfloat16)
|
204 |
#pipe.unet = torch.compile(pipe.unet, backend="hidet")
|
205 |
-
pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False)
|
206 |
#pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
|
207 |
pipe.to(device=device, dtype=torch.bfloat16)
|
208 |
|
@@ -210,11 +210,11 @@ def load_and_prepare_model():
|
|
210 |
|
211 |
hidet.option.parallel_build(True)
|
212 |
hidet.option.parallel_tune(2,2.0)
|
213 |
-
torch._dynamo.config.suppress_errors = True
|
214 |
torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)
|
215 |
|
216 |
# more search
|
217 |
-
hidet.torch.dynamo_config.search_space(0)
|
218 |
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
|
219 |
hidet.option.cache_dir("local_cache")
|
220 |
# automatically transform the model to use float16 data type
|
@@ -222,8 +222,8 @@ hidet.option.cache_dir("local_cache")
|
|
222 |
# use float16 data type as the accumulate data type in operators with reduction
|
223 |
#hidet.torch.dynamo_config.use_fp16_reduction(True)
|
224 |
# use tensorcore
|
225 |
-
hidet.torch.dynamo_config.use_tensor_core()
|
226 |
-
hidet.torch.dynamo_config.steal_weights(False)
|
227 |
|
228 |
# Preload and compile both models
|
229 |
|
|
|
202 |
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
|
203 |
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={'epilogue_fusion': True, 'shape_padding': True}) #.to(device=device, dtype=torch.bfloat16)
|
204 |
#pipe.unet = torch.compile(pipe.unet, backend="hidet")
|
205 |
+
pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={"search_space": 0})
|
206 |
#pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
|
207 |
pipe.to(device=device, dtype=torch.bfloat16)
|
208 |
|
|
|
210 |
|
211 |
hidet.option.parallel_build(True)
|
212 |
hidet.option.parallel_tune(2,2.0)
|
213 |
+
#torch._dynamo.config.suppress_errors = True
|
214 |
torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)
|
215 |
|
216 |
# more search
|
217 |
+
#hidet.torch.dynamo_config.search_space(0)
|
218 |
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
|
219 |
hidet.option.cache_dir("local_cache")
|
220 |
# automatically transform the model to use float16 data type
|
|
|
222 |
# use float16 data type as the accumulate data type in operators with reduction
|
223 |
#hidet.torch.dynamo_config.use_fp16_reduction(True)
|
224 |
# use tensorcore
|
225 |
+
#hidet.torch.dynamo_config.use_tensor_core()
|
226 |
+
#hidet.torch.dynamo_config.steal_weights(False)
|
227 |
|
228 |
# Preload and compile both models
|
229 |
|