Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ from typing import Tuple
|
|
18 |
import paramiko
|
19 |
import datetime
|
20 |
import cyper
|
|
|
21 |
|
22 |
torch.backends.cuda.matmul.allow_tf32 = False
|
23 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
@@ -81,6 +82,8 @@ os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
|
81 |
|
82 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
83 |
|
|
|
|
|
84 |
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
85 |
# adjust the batch_size of prompt_embeds according to guidance_scale
|
86 |
if step_index == int(pipeline.num_timesteps * 0.1):
|
@@ -176,6 +179,9 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
176 |
|
177 |
code = r'''
|
178 |
|
|
|
|
|
|
|
179 |
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
180 |
# adjust the batch_size of prompt_embeds according to guidance_scale
|
181 |
if step_index == int(pipeline.num_timesteps * 0.1):
|
@@ -241,7 +247,7 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
241 |
|
242 |
'''
|
243 |
|
244 |
-
pyx = cyper.inline(code)
|
245 |
|
246 |
@spaces.GPU(duration=30)
|
247 |
def generate_30(
|
@@ -283,6 +289,13 @@ def generate_30(
|
|
283 |
sd_image_path = f"rv_C_{timestamp}.png"
|
284 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
285 |
pyx.upload_to_ftp(sd_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
unique_name = str(uuid.uuid4()) + ".png"
|
287 |
os.symlink(sd_image_path, unique_name)
|
288 |
return [unique_name]
|
|
|
18 |
import paramiko
|
19 |
import datetime
|
20 |
import cyper
|
21 |
+
from image_gen_aux import UpscaleWithModel
|
22 |
|
23 |
torch.backends.cuda.matmul.allow_tf32 = False
|
24 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
82 |
|
83 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
84 |
|
85 |
+
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
86 |
+
|
87 |
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
88 |
# adjust the batch_size of prompt_embeds according to guidance_scale
|
89 |
if step_index == int(pipeline.num_timesteps * 0.1):
|
|
|
179 |
|
180 |
code = r'''
|
181 |
|
182 |
+
import torch
|
183 |
+
import paramiko
|
184 |
+
|
185 |
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
186 |
# adjust the batch_size of prompt_embeds according to guidance_scale
|
187 |
if step_index == int(pipeline.num_timesteps * 0.1):
|
|
|
247 |
|
248 |
'''
|
249 |
|
250 |
+
pyx = cyper.inline(code, fast_indexing=True)
|
251 |
|
252 |
@spaces.GPU(duration=30)
|
253 |
def generate_30(
|
|
|
289 |
sd_image_path = f"rv_C_{timestamp}.png"
|
290 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
291 |
pyx.upload_to_ftp(sd_image_path)
|
292 |
+
torch.set_float32_matmul_precision("medium")
|
293 |
+
with torch.no_grad():
|
294 |
+
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
295 |
+
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
296 |
+
downscale_path = f"rv50_upscale_{timestamp}.png"
|
297 |
+
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
298 |
+
pyx.upload_to_ftp(downscale_path)
|
299 |
unique_name = str(uuid.uuid4()) + ".png"
|
300 |
os.symlink(sd_image_path, unique_name)
|
301 |
return [unique_name]
|