ford442 commited on
Commit
bdb5517
·
verified ·
1 Parent(s): 1962dc7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -179,8 +179,11 @@ def load_and_prepare_model():
179
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
180
  pipe.vae = vaeXL #.to(torch.bfloat16)
181
  pipe.scheduler = sched
182
- #pipe.vae.do_resize=False
183
- #pipe.vae.vae_scale_factor=8
 
 
 
184
  pipe.vae.set_default_attn_processor()
185
  #pipe.to(device)
186
  #pipe.to(torch.bfloat16)
@@ -199,7 +202,7 @@ def load_and_prepare_model():
199
 
200
  #pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
201
 
202
- pipe.unet.to(memory_format=torch.channels_last)
203
  #pipe.enable_vae_tiling()
204
  #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune') #.to(device=device, dtype=torch.bfloat16)
205
  #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
 
179
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
180
  pipe.vae = vaeXL #.to(torch.bfloat16)
181
  pipe.scheduler = sched
182
+
183
+ pipe.vae.do_resize = False
184
+ #pipe.vae.vae_scale_factor = 8
185
+ pipe.vae.do_convert_rgb = True
186
+
187
  pipe.vae.set_default_attn_processor()
188
  #pipe.to(device)
189
  #pipe.to(torch.bfloat16)
 
202
 
203
  #pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
204
 
205
+ #pipe.unet.to(memory_format=torch.channels_last)
206
  #pipe.enable_vae_tiling()
207
  #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune') #.to(device=device, dtype=torch.bfloat16)
208
  #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)