File size: 8,259 Bytes
5d92a23
 
1a21d80
5d92a23
 
0d89801
5d92a23
 
 
0d89801
 
 
 
031c42b
83cae6c
 
 
0d89801
 
5d92a23
1dcf1d9
f0e8d1f
0d89801
1a21d80
44b4b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a21d80
 
 
 
44b4b3d
1a21d80
 
 
 
 
 
91805f7
 
1a21d80
 
 
 
44b4b3d
1a21d80
 
44b4b3d
1a21d80
 
 
91805f7
 
1a21d80
 
 
0d89801
f0e8d1f
0d89801
 
5d92a23
 
1dcf1d9
5d92a23
 
 
1dcf1d9
 
 
 
11414b7
5d92a23
 
 
 
 
 
 
 
d2b30ac
 
5d92a23
 
 
 
1a21d80
5d92a23
 
 
 
 
 
 
91805f7
5d92a23
 
0d89801
 
1a21d80
0d89801
 
91805f7
 
 
 
0d89801
 
 
1a21d80
0d89801
5d92a23
91805f7
1a21d80
0d89801
5d92a23
 
1a21d80
867296e
5d92a23
 
 
8a84578
0d89801
5d92a23
 
867296e
 
5d92a23
 
 
8a84578
 
 
0d89801
 
 
 
 
 
 
 
 
 
 
 
3e075bb
5d92a23
 
 
 
 
 
 
 
 
 
 
 
91805f7
 
 
5d92a23
 
 
 
 
 
11414b7
5d92a23
 
 
1dcf1d9
5d92a23
 
 
 
1dcf1d9
 
 
5d92a23
 
 
1dcf1d9
5d92a23
 
 
 
1dcf1d9
 
5d92a23
 
 
 
 
0d89801
 
1a21d80
5d92a23
 
1a21d80
ac215a6
 
 
 
 
 
 
 
 
 
91805f7
 
ac215a6
 
 
 
 
 
21fd598
ac215a6
0d89801
 
 
 
 
5d92a23
 
 
 
91805f7
 
0d89801
 
5d92a23
 
0d89801
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from typing import Tuple

import requests
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline

MARKDOWN = """
# FLUX.1 Inpainting 🔥

Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for 
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) 
for taking it to the next level by enabling inpainting with the FLUX.
"""

MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
    image = image.convert("RGBA")
    data = image.getdata()
    new_data = []
    for item in data:
        avg = sum(item[:3]) / 3
        if avg < threshold:
            new_data.append((0, 0, 0, 0))
        else:
            new_data.append(item)

    image.putdata(new_data)
    return image


EXAMPLES = [
    [
        {
            "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
            "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))],
            "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
        },
        "little lion",
        42,
        False,
        0.85,
        30,
        None
    ],
    [
        {
            "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
            "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))],
            "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
        },
        "tribal tattoos",
        42,
        False,
        0.85,
        30,
        None
    ]
]

pipe = FluxInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)


def resize_image_dimensions(
    original_resolution_wh: Tuple[int, int],
    maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
    width, height = original_resolution_wh

    # if width <= maximum_dimension and height <= maximum_dimension:
    #     width = width - (width % 32)
    #     height = height - (height % 32)
    #     return width, height

    if width > height:
        scaling_factor = maximum_dimension / width
    else:
        scaling_factor = maximum_dimension / height

    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)

    new_width = new_width - (new_width % 32)
    new_height = new_height - (new_height % 32)

    return new_width, new_height


@spaces.GPU(duration=100)
def process(
    input_image_editor: dict,
    input_text: str,
    seed_slicer: int,
    randomize_seed_checkbox: bool,
    strength_slider: float,
    num_inference_steps_slider: int,
    uploaded_mask: Image.Image,
    progress=gr.Progress(track_tqdm=True)
):
    if not input_text:
        gr.Info("Please enter a text prompt.")
        return None, None

    image = input_image_editor['background']
    if uploaded_mask is None:
        mask = input_image_editor['layers'][0]
    else:
        mask = uploaded_mask

    if not image:
        gr.Info("Please upload an image.")
        return None, None

    if not mask:
        gr.Info("Please draw a mask on the image or upload a mask.")
        return None, None

    width, height = resize_image_dimensions(original_resolution_wh=image.size)
    resized_image = image.resize((width, height), Image.LANCZOS)
    resized_mask = mask.resize((width, height), Image.LANCZOS)

    if randomize_seed_checkbox:
        seed_slicer = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed_slicer)
    result = pipe(
        prompt=input_text,
        image=resized_image,
        mask_image=resized_mask,
        width=width,
        height=height,
        strength=strength_slider,
        generator=generator,
        num_inference_steps=num_inference_steps_slider
    ).images[0]
    print('INFERENCE DONE')
    return result, resized_mask


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image_editor_component = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload", "webcam"],
                image_mode='RGB',
                layers=False,
                brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))

            with gr.Row():
                input_text_component = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                submit_button_component = gr.Button(
                    value='Submit', variant='primary', scale=0)

            with gr.Accordion("Upload a mask", open = False):
                uploaded_mask_component = gr.Image(label = "Already made mask (white pixels will be preserved, black pixels will be redrawn)", sources = ["upload"], type = "pil")

            with gr.Accordion("Advanced Settings", open=False):
                seed_slicer_component = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                )

                randomize_seed_checkbox_component = gr.Checkbox(
                    label="Randomize seed", value=True)

                with gr.Row():
                    strength_slider_component = gr.Slider(
                        label="Strength",
                        info="Indicates extent to transform the reference `image`. "
                             "Must be between 0 and 1. `image` is used as a starting "
                             "point and more noise is added the higher the `strength`.",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.85,
                    )

                    num_inference_steps_slider_component = gr.Slider(
                        label="Number of inference steps",
                        info="The number of denoising steps. More denoising steps "
                             "usually lead to a higher quality image at the",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=20,
                    )
        with gr.Column():
            output_image_component = gr.Image(
                type='pil', image_mode='RGB', label='Generated image', format="png")
            with gr.Accordion("Debug", open=False):
                output_mask_component = gr.Image(
                    type='pil', image_mode='RGB', label='Input mask', format="png")
    with gr.Row():
        gr.Examples(
            fn=process,
            examples=EXAMPLES,
            inputs=[
                input_image_editor_component,
                input_text_component,
                seed_slicer_component,
                randomize_seed_checkbox_component,
                strength_slider_component,
                num_inference_steps_slider_component,
                uploaded_mask_component
            ],
            outputs=[
                output_image_component,
                output_mask_component
            ],
            run_on_click=True,
            cache_examples=True
        )

    submit_button_component.click(
        fn=process,
        inputs=[
            input_image_editor_component,
            input_text_component,
            seed_slicer_component,
            randomize_seed_checkbox_component,
            strength_slider_component,
            num_inference_steps_slider_component,
            uploaded_mask_component
        ],
        outputs=[
            output_image_component,
            output_mask_component
        ]
    )

demo.launch(debug=False, show_error=True)