File size: 7,102 Bytes
0ecaccb
198d05b
8d4602c
198d05b
 
8d4602c
0ecaccb
 
8d4602c
198d05b
8d4602c
 
 
 
0ecaccb
8d4602c
 
0ecaccb
c544e04
0ecaccb
 
 
8d4602c
 
0ecaccb
c544e04
0ecaccb
 
8d4602c
 
0ecaccb
8d4602c
0ecaccb
 
 
 
8d4602c
0ecaccb
8d4602c
0ecaccb
8d4602c
0ecaccb
 
198d05b
 
 
 
 
 
 
 
0ecaccb
198d05b
 
 
0ecaccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d4602c
198d05b
 
 
0ecaccb
198d05b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ecaccb
198d05b
 
 
0ecaccb
8d4602c
 
 
0ecaccb
 
 
 
 
 
 
 
 
8d4602c
198d05b
1ef37f4
0ecaccb
 
 
 
 
 
 
198d05b
0ecaccb
 
 
 
 
 
 
 
 
 
 
1ef37f4
0ecaccb
 
 
 
 
 
 
 
 
 
 
 
198d05b
1ef37f4
0ecaccb
1ef37f4
8d4602c
0ecaccb
8d4602c
1ef37f4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import re
import webbrowser
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError
from accelerate.commands.estimate import create_empty_model, check_has_model
from accelerate.utils import convert_bytes, calculate_maximum_sizes

# We need to store them as globals because gradio doesn't have a way for us to pass them in to the button
HAS_DISCUSSION = True
MODEL_NAME = None
LIBRARY = None
TOKEN = os.environ.get("HUGGINGFACE_API_LOGIN", None)

def check_for_discussion(model_name:str):
    "Checks if an automated discussion has been opened on the model by `model-sizer-bot`"
    global TOKEN
    api = HfApi(token=TOKEN)
    discussions = list(api.get_repo_discussions(model_name))
    return any(discussion.title == "[AUTOMATED] Model Memory Requirements" and discussion.author == "model-sizer-bot" for discussion in discussions)

def report_results():
    "Reports the results of a memory calculation to the model's discussion page, and opens a new tab to it afterwards"
    global MODEL_NAME, LIBRARY, TOKEN
    api = HfApi(token=TOKEN)
    results = calculate_memory(MODEL_NAME, LIBRARY, ["fp32", "fp16", "int8", "int4"], raw=True)
    post = f"""# Model Memory Requirements\n
    
These calculations were measured from the [Model Memory Utility Space](https://hf.co/spaces/hf-accelerate/model-memory-utility) on the Hub.
    
The minimum recommended vRAM needed for this model to be loaded into memory via [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) is denoted by the size of the "largest layer". 
When performing inference, expect to add up to an additional 20% to this, as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). More tests will be performed in the future to get a more accurate benchmark for each model.

When training with `Adam`, you can expect roughly 4x the reported results to be used. (1x for the model, 1x for the gradients, and 2x for the optimizer).

## Results:

{results}
"""
    discussion = api.create_discussion(MODEL_NAME, "[AUTOMATED] Model Memory Requirements", description=post)
    webbrowser.open_new_tab(discussion.url)

def convert_url_to_name(url:str):
    "Converts a model URL to its name on the Hub"
    results = re.findall(r"huggingface.co\/(.*?)#", url)
    if len(results) < 1:
        raise ValueError(f"URL {url} is not a valid model URL to the Hugging Face Hub")
    return results[0]

def calculate_memory(model_name:str, library:str, options:list, access_token:str, raw=False):
    "Calculates the memory usage for a model"
    if library == "auto":
        library = None
    if "http" in model_name and "//" in model_name:
        try:
            model_name = convert_url_to_name(model_name)
        except ValueError:
            raise gr.Error(f"URL `{model_name}` is not a valid model URL to the Hugging Face Hub")
    try:
        model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token)
    except GatedRepoError:
        raise gr.Error(f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access.")
    except RepositoryNotFoundError:
        raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.")
    except ValueError as e:
        raise gr.Error(f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)")
    except (RuntimeError, OSError) as e:
        library = check_has_model(e)
        if library != "unknown":
            raise gr.Error(f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo.")
    
    total_size, largest_layer = calculate_maximum_sizes(model)

    data = []

    title = f"Memory Usage for '{model_name}'"
    for dtype in options:
        dtype_total_size = total_size
        dtype_largest_layer = largest_layer[0]
        if dtype == "float16":
            dtype_total_size /= 2
            dtype_largest_layer /= 2
        elif dtype == "int8":
            dtype_total_size /= 4
            dtype_largest_layer /= 4
        elif dtype == "int4":
            dtype_total_size /= 8
            dtype_largest_layer /= 8
        dtype_training_size = convert_bytes(dtype_total_size * 4)
        dtype_total_size = convert_bytes(dtype_total_size)
        dtype_largest_layer = convert_bytes(dtype_largest_layer)
        data.append({
            "dtype": dtype,
            "Largest Layer or Residual Group": dtype_largest_layer,
            "Total Size": dtype_total_size,
            "Training using Adam": dtype_training_size
        })
    global HAS_DISCUSSION, MODEL_NAME, LIBRARY
    HAS_DISCUSSION = check_for_discussion(model_name)
    MODEL_NAME = model_name
    LIBRARY = library

    if raw:
        return pd.DataFrame(data).to_markdown(index=False)
    
    results = [
        f'## {title}', 
        gr.update(visible=True, value=pd.DataFrame(data)), 
        gr.update(visible=not HAS_DISCUSSION)
    ]
    return results

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown(
            """# Model Memory Calculator

    This tool will help you calculate how much vRAM is needed to train and perform big model inference
    on a model hosted on the 🤗 Hugging Face Hub. The minimum recommended vRAM needed for a model
    is denoted as the size of the "largest layer", and training of a model is roughly 4x its size (for Adam).

    Currently this tool supports all models hosted that use `transformers` and `timm`.

    To use this tool pass in the URL or model name of the model you want to calculate the memory usage for,
    select which framework it originates from ("auto" will try and detect it from the model metadata), and
    what precisions you want to use."""
        )
        out_text = gr.Markdown()
        out = gr.DataFrame(
            headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"],
            interactive=False,
            visible=False,
        )
        with gr.Row():
            inp = gr.Textbox(label="Model Name or URL")
        with gr.Row():
            library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto")
            options = gr.CheckboxGroup(
                ["float32", "float16", "int8", "int4"],
                value="float32"
            )
            access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)")
        with gr.Row():
            btn = gr.Button("Calculate Memory Usage")
            post_to_hub = gr.Button(value = "Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False)

    btn.click(
        calculate_memory, inputs=[inp, library, options, access_token], outputs=[out_text, out, post_to_hub],
    )
    
    post_to_hub.click(report_results).then(lambda: gr.Button.update(visible=False), outputs=post_to_hub)


demo.launch()