Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,359 Bytes
dcda545 017433f dcda545 017433f dcda545 017433f dcda545 017433f 73ef9a8 dcda545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns
import config
from pathlib import Path
import pandas as pd
abs_path = Path(__file__).parent
df = pd.read_json(str(abs_path / "leaderboard_data.json"))
# Make a model size column
numeric_interval = pd.IntervalIndex(
sorted([config.NUMERIC_INTERVALS[s] for s in config.NUMERIC_INTERVALS.keys()])
)
params_column = pd.to_numeric(df["#Params (B)"], errors="coerce")
df["Model Size"] = params_column.apply(
lambda x: next(s for s in numeric_interval if x in s)
)
with gr.Blocks() as demo:
gr.Markdown("""
# 🥇 Leaderboard Component
""")
with gr.Tabs():
with gr.Tab("Demo"):
Leaderboard(
value=df,
select_columns=SelectColumns(
default_selection=config.ON_LOAD_COLUMNS,
cant_deselect=["T", "Model"],
label="Select Columns to Display:",
),
search_columns=["model_name_for_query", "Type"],
hide_columns=["model_name_for_query", "Model Size"],
filter_columns=config.FILTER_COLUMNS,
datatype=config.TYPES,
)
with gr.Tab("Docs"):
gr.Markdown((Path(__file__).parent / "docs.md").read_text())
if __name__ == "__main__":
demo.launch()
|