|
from queue import Queue |
|
from threading import Thread |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import spaces |
|
import gradio as gr |
|
import torch |
|
|
|
from parler_tts import ParlerTTSForConditionalGeneration |
|
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed |
|
from transformers.generation.streamers import BaseStreamer |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
torch_dtype = torch.float16 if device != "cpu" else torch.float32 |
|
|
|
repo_id = "parler-tts/parler_tts_mini_v0.1" |
|
|
|
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(repo_id) |
|
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) |
|
|
|
SAMPLE_RATE = feature_extractor.sampling_rate |
|
SEED = 42 |
|
|
|
default_text = "Please surprise me and speak in whatever voice you enjoy." |
|
examples = [ |
|
[ |
|
"Remember - this is only the first iteration of the model! To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data by a factor of five times.", |
|
"A male speaker with a low-pitched voice delivering his words at a fast pace in a small, confined space with a very clear audio and an animated tone." |
|
], |
|
[ |
|
"'This is the best time of my life, Bartley,' she said happily.", |
|
"A female speaker with a slightly low-pitched, quite monotone voice delivers her words at a slightly faster-than-average pace in a confined space with very clear audio.", |
|
], |
|
[ |
|
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.", |
|
"A male speaker with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.", |
|
], |
|
[ |
|
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.", |
|
"A male speaker with a low-pitched voice delivers his words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.", |
|
], |
|
] |
|
|
|
class ParlerTTSStreamer(BaseStreamer): |
|
def __init__( |
|
self, |
|
model: ParlerTTSForConditionalGeneration, |
|
device: Optional[str] = None, |
|
play_steps: Optional[int] = 10, |
|
stride: Optional[int] = None, |
|
timeout: Optional[float] = None, |
|
): |
|
""" |
|
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is |
|
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive |
|
Gradio demo). |
|
Parameters: |
|
model (`ParlerTTSForConditionalGeneration`): |
|
The Parler-TTS model used to generate the audio waveform. |
|
device (`str`, *optional*): |
|
The torch device on which to run the computation. If `None`, will default to the device of the model. |
|
play_steps (`int`, *optional*, defaults to 10): |
|
The number of generation steps with which to return the generated audio array. Using fewer steps will |
|
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value |
|
should be tuned to your device and latency requirements. |
|
stride (`int`, *optional*): |
|
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces |
|
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to |
|
play_steps // 6 in the audio space. |
|
timeout (`int`, *optional*): |
|
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions |
|
in `.generate()`, when it is called in a separate thread. |
|
""" |
|
self.decoder = model.decoder |
|
self.audio_encoder = model.audio_encoder |
|
self.generation_config = model.generation_config |
|
self.device = device if device is not None else model.device |
|
|
|
|
|
self.play_steps = play_steps |
|
if stride is not None: |
|
self.stride = stride |
|
else: |
|
hop_length = np.prod(self.audio_encoder.config.upsampling_ratios) |
|
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6 |
|
self.token_cache = None |
|
self.to_yield = 0 |
|
|
|
|
|
self.audio_queue = Queue() |
|
self.stop_signal = None |
|
self.timeout = timeout |
|
|
|
def apply_delay_pattern_mask(self, input_ids): |
|
|
|
_, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( |
|
input_ids[:, :1], |
|
pad_token_id=self.generation_config.decoder_start_token_id, |
|
max_length=input_ids.shape[-1], |
|
) |
|
|
|
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask) |
|
|
|
|
|
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape( |
|
1, self.decoder.num_codebooks, -1 |
|
) |
|
|
|
|
|
input_ids = input_ids[None, ...] |
|
|
|
|
|
input_ids = input_ids.to(self.audio_encoder.device) |
|
|
|
output_values = self.audio_encoder.decode( |
|
input_ids, |
|
audio_scales=[None], |
|
) |
|
audio_values = output_values.audio_values[0, 0] |
|
return audio_values.cpu().float().numpy() |
|
|
|
def put(self, value): |
|
batch_size = value.shape[0] // self.decoder.num_codebooks |
|
if batch_size > 1: |
|
raise ValueError("MusicgenStreamer only supports batch size 1") |
|
|
|
if self.token_cache is None: |
|
self.token_cache = value |
|
else: |
|
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1) |
|
|
|
if self.token_cache.shape[-1] % self.play_steps == 0: |
|
audio_values = self.apply_delay_pattern_mask(self.token_cache) |
|
self.on_finalized_audio(audio_values[self.to_yield : -self.stride]) |
|
self.to_yield += len(audio_values) - self.to_yield - self.stride |
|
|
|
def end(self): |
|
"""Flushes any remaining cache and appends the stop symbol.""" |
|
if self.token_cache is not None: |
|
audio_values = self.apply_delay_pattern_mask(self.token_cache) |
|
else: |
|
audio_values = np.zeros(self.to_yield) |
|
|
|
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True) |
|
|
|
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False): |
|
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue.""" |
|
self.audio_queue.put(audio, timeout=self.timeout) |
|
if stream_end: |
|
self.audio_queue.put(self.stop_signal, timeout=self.timeout) |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
value = self.audio_queue.get(timeout=self.timeout) |
|
if not isinstance(value, np.ndarray) and value == self.stop_signal: |
|
raise StopIteration() |
|
else: |
|
return value |
|
|
|
|
|
sampling_rate = model.audio_encoder.config.sampling_rate |
|
frame_rate = model.audio_encoder.config.frame_rate |
|
|
|
target_dtype = np.int16 |
|
max_range = np.iinfo(target_dtype).max |
|
|
|
@spaces.GPU |
|
def gen_tts(text, description, play_steps_in_s=2.0): |
|
play_steps = int(frame_rate * play_steps_in_s) |
|
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps) |
|
|
|
inputs = tokenizer(description, return_tensors="pt").to(device) |
|
prompt = tokenizer(text, return_tensors="pt").to(device) |
|
|
|
generation_kwargs = dict( |
|
input_ids=inputs.input_ids, |
|
prompt_input_ids=prompt.input_ids, |
|
streamer=streamer, |
|
do_sample=True, |
|
temperature=1.0, |
|
) |
|
|
|
set_seed(SEED) |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
for new_audio in streamer: |
|
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") |
|
new_audio = (new_audio * max_range).astype(np.int16) |
|
yield sampling_rate, new_audio |
|
|
|
css = """ |
|
#share-btn-container { |
|
display: flex; |
|
padding-left: 0.5rem !important; |
|
padding-right: 0.5rem !important; |
|
background-color: #000000; |
|
justify-content: center; |
|
align-items: center; |
|
border-radius: 9999px !important; |
|
width: 13rem; |
|
margin-top: 10px; |
|
margin-left: auto; |
|
flex: unset !important; |
|
} |
|
#share-btn { |
|
all: initial; |
|
color: #ffffff; |
|
font-weight: 600; |
|
cursor: pointer; |
|
font-family: 'IBM Plex Sans', sans-serif; |
|
margin-left: 0.5rem !important; |
|
padding-top: 0.25rem !important; |
|
padding-bottom: 0.25rem !important; |
|
right:0; |
|
} |
|
#share-btn * { |
|
all: unset !important; |
|
} |
|
#share-btn-container div:nth-child(-n+2){ |
|
width: auto !important; |
|
min-height: 0px !important; |
|
} |
|
#share-btn-container .wrap { |
|
display: none !important; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as block: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> |
|
Parler-TTS 🗣️ |
|
</h1> |
|
</div> |
|
</div> |
|
""" |
|
) |
|
gr.HTML( |
|
f""" |
|
<p><a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> is a training and inference library for |
|
high-fidelity text-to-speech (TTS) models. The model demonstrated here, <a href="https://huggingface.co/parler-tts/parler_tts_mini_v0.1"> Parler-TTS Mini v0.1</a>, |
|
is the first iteration model trained using 10k hours of narrated audiobooks. It generates high-quality speech |
|
with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation).</p> |
|
|
|
<p>Tips for ensuring good generation: |
|
<ul> |
|
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li> |
|
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li> |
|
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li> |
|
</ul> |
|
</p> |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text") |
|
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description") |
|
run_button = gr.Button("Generate Audio", variant="primary") |
|
with gr.Column(): |
|
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out") |
|
|
|
inputs = [input_text, description] |
|
outputs = [audio_out] |
|
gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True) |
|
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True) |
|
gr.HTML( |
|
""" |
|
<p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech. |
|
The v1 release of the model will be trained on this data, as well as inference optimisations, such as flash attention |
|
and torch compile, that will improve the latency by 2-4x. If you want to find out more about how this model was trained and even fine-tune it yourself, check-out the |
|
<a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> repository on GitHub.</p> |
|
|
|
<p>The Parler-TTS codebase and its associated checkpoints are licensed under <a href='https://github.com/huggingface/parler-tts?tab=Apache-2.0-1-ov-file#readme'> Apache 2.0</a>.</p> |
|
""" |
|
) |
|
|
|
block.queue() |
|
block.launch(share=True) |
|
|