Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import cv2 | |
from PIL import Image | |
import torch | |
import time | |
import numpy as np | |
from gradio_webrtc import WebRTC | |
import os | |
from twilio.rest import Client | |
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor | |
from draw_boxes import draw_bounding_boxes | |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd") | |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda") | |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
if account_sid and auth_token: | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = { | |
"iceServers": token.ice_servers, | |
"iceTransportPolicy": "relay", | |
} | |
else: | |
rtc_configuration = None | |
print("RTC_CONFIGURATION", rtc_configuration) | |
SUBSAMPLE = 2 | |
def stream_object_detection(video, conf_threshold): | |
cap = cv2.VideoCapture(video) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
iterating = True | |
#desired_fps = fps // SUBSAMPLE | |
batch = [] | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2 | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2 | |
#n_frames = 0 | |
while iterating: | |
iterating, frame = cap.read() | |
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5) | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
#if n_frames % SUBSAMPLE == 0: | |
batch.append(frame) | |
if len(batch) == fps: | |
inputs = image_processor(images=batch, return_tensors="pt").to("cuda") | |
print(f"starting batch of size {len(batch)}") | |
start = time.time() | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
end = time.time() | |
print("time taken for inference", end - start) | |
start = time.time() | |
boxes = image_processor.post_process_object_detection( | |
outputs, | |
target_sizes=torch.tensor([(height, width)] * len(batch)), | |
threshold=conf_threshold) | |
for _, (array, box) in enumerate(zip(batch, boxes)): | |
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold) | |
frame = np.array(pil_image) | |
# Convert RGB to BGR | |
frame = frame[:, :, ::-1].copy() | |
yield frame | |
batch = [] | |
end = time.time() | |
print("time taken for processing boxes", end - start) | |
with gr.Blocks() as app: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Video Object Detection with RT-DETR (Powered by WebRTC ⚡️) | |
</h1> | |
""") | |
gr.HTML( | |
""" | |
<h3 style='text-align: center'> | |
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>github</a> | |
</h3> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
video = gr.Video(label="Video Source") | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.30, | |
) | |
with gr.Column(): | |
output = WebRTC(label="WebRTC Stream", | |
rtc_configuration=rtc_configuration, | |
mode="receive", | |
modality="video") | |
detect = gr.Button("Detect", variant="primary") | |
output.stream( | |
fn=stream_object_detection, | |
inputs=[video, conf_threshold], | |
outputs=[output], | |
trigger=detect.click | |
) | |
gr.Examples(examples=["video_example.mp4"], | |
inputs=[video]) | |
if __name__ == '__main__': | |
app.launch() |