streamlit_chatbot / app[EN].py
fschwartzer's picture
Rename app.py to app[EN].py
ee399ee verified
raw
history blame
3.15 kB
import streamlit as st
import pandas as pd
import torch
from transformers import TapexTokenizer, BartForConditionalGeneration
import datetime
# Load the CSV file
df = pd.read_csv("anomalies.csv", quotechar='"')
df.rename(columns={"ds": "Ano e mês", "real": "Valor Monetário", "Group": "Grupo"}, inplace=True)
df.sort_values(by=['Ano e mês', 'Valor Monetário'], ascending=False, inplace=True)
print(df)
# Filter 'real' higher than 10 Million
df= df[df['Valor Monetário'] >= 1000000.]
# Convert 'real' column to standard float format and then to strings
df['Valor Monetário'] = df['Valor Monetário'].apply(lambda x: f"{x:.2f}")
# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)
table_data = df
# Function to generate a response using the TAPEX model
def response(user_question, table_data):
a = datetime.datetime.now()
model_name = "microsoft/tapex-large-finetuned-wtq"
model = BartForConditionalGeneration.from_pretrained(model_name)
tokenizer = TapexTokenizer.from_pretrained(model_name)
queries = [user_question]
encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True)
# Experiment with generation parameters
outputs = model.generate(
**encoding
)
ans = tokenizer.batch_decode(outputs, skip_special_tokens=True)
query_result = {
"Resposta": ans[0]
}
b = datetime.datetime.now()
print(b - a)
return query_result
# Streamlit interface
st.dataframe(table_data.head())
st.markdown("""
<div style='display: flex; align-items: center;'>
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)
# Chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")
if user_question:
# Add human emoji when user asks a question
st.session_state['history'].append(('👤', user_question))
st.markdown(f"**👤 {user_question}**")
# Generate the response
bot_response = response(user_question, table_data)["Resposta"]
# Add robot emoji when generating response and align to the right
st.session_state['history'].append(('🤖', bot_response))
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
# Clear history button
if st.button("Limpar"):
st.session_state['history'] = []
# Display chat history
for sender, message in st.session_state['history']:
if sender == '👤':
st.markdown(f"**👤 {message}**")
elif sender == '🤖':
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)