Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import pipeline | |
import datetime | |
from rapidfuzz import process, fuzz | |
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS | |
# Load the CSV file | |
df = pd.read_csv("anomalies.csv", quotechar='"') | |
# Filter 'real' higher than 10 Million | |
df= df[df['real'] >= 1000000.] | |
# Convert 'real' column to standard float format and then to strings | |
df['real'] = df['real'].apply(lambda x: f"{x:.2f}") | |
# Fill NaN values and convert all columns to strings | |
df = df.fillna('').astype(str) | |
print(df) | |
# Function to remove stopwords | |
def remove_stopwords(text, stopwords=ENGLISH_STOP_WORDS): | |
return ' '.join([word for word in text.split() if word.lower() not in stopwords]) | |
# Function to filter DataFrame by checking if any of the user question words are in the columns | |
def filter_dataframe(df, user_question, threshold=80): | |
user_question = remove_stopwords(user_question) # Remove stopwords | |
question_words = user_question.split() | |
mask = pd.Series([False] * len(df), index=df.index) | |
for column in df.columns: | |
for word in question_words: | |
# Apply RapidFuzz fuzzy matching on the column | |
matches = process.extract(word, df[column], scorer=fuzz.token_sort_ratio, limit=None) | |
match_indices = [match[2] for match in matches if match[1] >= threshold] | |
mask.loc[match_indices] = True # Ensure the mask is aligned with the DataFrame index | |
filtered_df = df[mask] | |
return filtered_df | |
# Function to generate a response using the TAPAS model | |
def response(user_question, df): | |
a = datetime.datetime.now() | |
# Filter the DataFrame dynamically by user question | |
subset_df = filter_dataframe(df, user_question) | |
# Check if the DataFrame is empty | |
if subset_df.empty: | |
return {"Resposta": "Desculpe, não há dados disponíveis para responder à sua pergunta."} | |
# Initialize the TAPAS model | |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", | |
tokenizer_kwargs={"clean_up_tokenization_spaces": False}) | |
# Debugging information | |
print("Filtered DataFrame shape:", subset_df.shape) | |
print("Filtered DataFrame head:\n", subset_df.head()) | |
print("User question:", user_question) | |
# Query the TAPAS model | |
try: | |
answer = tqa(table=subset_df, query=user_question)['answer'] | |
except ValueError as e: | |
print(f"Error: {e}") | |
answer = "Desculpe, ocorreu um erro ao processar sua pergunta." | |
query_result = { | |
"Resposta": answer | |
} | |
b = datetime.datetime.now() | |
print("Time taken:", b - a) | |
return query_result | |
# Streamlit interface | |
st.markdown(""" | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div> | |
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span> | |
</div> | |
""", unsafe_allow_html=True) | |
# Chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Input box for user question | |
user_question = st.text_input("Escreva sua questão aqui:", "") | |
if user_question: | |
# Add human emoji when user asks a question | |
st.session_state['history'].append(('👤', user_question)) | |
st.markdown(f"**👤 {user_question}**") | |
# Generate the response | |
bot_response = response(user_question, df)["Resposta"] | |
# Add robot emoji when generating response and align to the right | |
st.session_state['history'].append(('🤖', bot_response)) | |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True) | |
# Clear history button | |
if st.button("Limpar"): | |
st.session_state['history'] = [] | |
# Display chat history | |
for sender, message in st.session_state['history']: | |
if sender == '👤': | |
st.markdown(f"**👤 {message}**") | |
elif sender == '🤖': | |
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True) | |