TiTok / app.py
yucornetto's picture
Update app.py
e5da114 verified
# Reference: https://huggingface.co/spaces/FoundationVision/LlamaGen/blob/main/app.py
from PIL import Image
import gradio as gr
from imagenet_classes import imagenet_idx2classname
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import time
import demo_util
import os
import spaces
from huggingface_hub import hf_hub_download
os.system("pip3 install -U numpy")
model2ckpt = {
"TiTok-L-32": ("tokenizer_titok_l32.bin", "generator_titok_l32.bin"),
}
hf_hub_download(repo_id="fun-research/TiTok", filename="tokenizer_titok_l32.bin", local_dir="./")
hf_hub_download(repo_id="fun-research/TiTok", filename="generator_titok_l32.bin", local_dir="./")
# @spaces.GPU
def load_model():
device = "cuda" #if torch.cuda.is_available() else "cpu"
config = demo_util.get_config("configs/titok_l32.yaml")
print(config)
titok_tokenizer = demo_util.get_titok_tokenizer(config)
print(titok_tokenizer)
titok_generator = demo_util.get_titok_generator(config)
print(titok_generator)
titok_tokenizer = titok_tokenizer.to(device)
titok_generator = titok_generator.to(device)
return titok_tokenizer, titok_generator
titok_tokenizer, titok_generator = load_model()
@spaces.GPU
def demo_infer(
guidance_scale, randomize_temperature, num_sample_steps,
class_label, seed):
device = "cuda"
# device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = titok_tokenizer #.to(device)
generator = titok_generator #.to(device)
n = 4
class_labels = [class_label for _ in range(n)]
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
t1 = time.time()
generated_image = demo_util.sample_fn(
generator=generator,
tokenizer=tokenizer,
labels=class_labels,
guidance_scale=guidance_scale,
randomize_temperature=randomize_temperature,
num_sample_steps=num_sample_steps,
device=device
)
sampling_time = time.time() - t1
print(f"generation takes about {sampling_time:.2f} seconds.")
samples = [Image.fromarray(sample) for sample in generated_image]
return samples
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center'>An Image is Worth 32 Tokens for Reconstruction and Generation</h1>")
with gr.Tabs():
with gr.TabItem('Generate'):
with gr.Row():
with gr.Column():
with gr.Row():
i1k_class = gr.Dropdown(
list(imagenet_idx2classname.values()),
value='Eskimo dog, husky',
type="index", label='ImageNet-1K Class'
)
guidance_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=3.5, label='Classifier-free Guidance Scale')
randomize_temperature = gr.Slider(minimum=0., maximum=10.0, step=0.1, value=1.0, label='randomize_temperature')
num_sample_steps = gr.Slider(minimum=1, maximum=32, step=1, value=8, label='num_sample_steps')
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=42, label='Seed')
button = gr.Button("Generate", variant="primary")
with gr.Column():
output = gr.Gallery(label='Generated Images',
columns=4,
rows=1,
height=256, object_fit="scale-down")
button.click(demo_infer, inputs=[
guidance_scale, randomize_temperature, num_sample_steps,
i1k_class, seed],
outputs=[output])
demo.queue()
demo.launch(debug=True)