"""This file contains code for MaskGIT-VQGAN. This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. Reference: https://github.com/huggingface/open-muse/blob/main/muse/modeling_maskgit_vqgan.py """ # Copyright 2023 Google LLC and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""MaskGIT Tokenizer based on VQGAN. This tokenizer is a reimplementation of VQGAN [https://arxiv.org/abs/2012.09841] with several modifications. The non-local layers are removed from VQGAN for faster speed. """ import math import torch import torch.nn.functional as F from torch import nn # Conv2D with same padding class Conv2dSame(nn.Conv2d): def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int: return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: ih, iw = x.size()[-2:] pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0]) pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1]) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) return super().forward(x) class ResnetBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int = None, dropout_prob: float = 0.0, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.conv1 = Conv2dSame(self.in_channels, self.out_channels_, kernel_size=3, bias=False) self.norm2 = nn.GroupNorm(num_groups=32, num_channels=self.out_channels_, eps=1e-6, affine=True) self.dropout = nn.Dropout(dropout_prob) self.conv2 = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=3, bias=False) if self.in_channels != self.out_channels_: self.nin_shortcut = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=1, bias=False) def forward(self, hidden_states): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels_: residual = self.nin_shortcut(hidden_states) return hidden_states + residual class DownsamplingBlock(nn.Module): def __init__(self, config, block_idx: int): super().__init__() self.config = config self.block_idx = block_idx in_channel_mult = (1,) + tuple(self.config.channel_mult) block_in = self.config.hidden_channels * in_channel_mult[self.block_idx] block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx] res_blocks = nn.ModuleList() for _ in range(self.config.num_res_blocks): res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout)) block_in = block_out self.block = res_blocks self.downsample = self.block_idx != self.config.num_resolutions - 1 def forward(self, hidden_states): for res_block in self.block: hidden_states = res_block(hidden_states) if self.downsample: hidden_states = F.avg_pool2d(hidden_states, kernel_size=2, stride=2) return hidden_states class UpsamplingBlock(nn.Module): def __init__(self, config, block_idx: int): super().__init__() self.config = config self.block_idx = block_idx if self.block_idx == self.config.num_resolutions - 1: block_in = self.config.hidden_channels * self.config.channel_mult[-1] else: block_in = self.config.hidden_channels * self.config.channel_mult[self.block_idx + 1] block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx] res_blocks = [] for _ in range(self.config.num_res_blocks): res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout)) block_in = block_out self.block = nn.ModuleList(res_blocks) self.add_upsample = self.block_idx != 0 if self.add_upsample: self.upsample_conv = Conv2dSame(block_out, block_out, kernel_size=3) def forward(self, hidden_states): for res_block in self.block: hidden_states = res_block(hidden_states) if self.add_upsample: hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") hidden_states = self.upsample_conv(hidden_states) return hidden_states class Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # downsampling self.conv_in = Conv2dSame(self.config.num_channels, self.config.hidden_channels, kernel_size=3, bias=False) downsample_blocks = [] for i_level in range(self.config.num_resolutions): downsample_blocks.append(DownsamplingBlock(self.config, block_idx=i_level)) self.down = nn.ModuleList(downsample_blocks) # middle mid_channels = self.config.hidden_channels * self.config.channel_mult[-1] res_blocks = nn.ModuleList() for _ in range(self.config.num_res_blocks): res_blocks.append(ResnetBlock(mid_channels, mid_channels, dropout_prob=self.config.dropout)) self.mid = res_blocks # end self.norm_out = nn.GroupNorm(num_groups=32, num_channels=mid_channels, eps=1e-6, affine=True) self.conv_out = Conv2dSame(mid_channels, self.config.z_channels, kernel_size=1) def forward(self, pixel_values): # downsampling hidden_states = self.conv_in(pixel_values) for block in self.down: hidden_states = block(hidden_states) # middle for block in self.mid: hidden_states = block(hidden_states) # end hidden_states = self.norm_out(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class Decoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # compute in_channel_mult, block_in and curr_res at lowest res block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1] curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1) self.z_shape = (1, self.config.z_channels, curr_res, curr_res) # z to block_in self.conv_in = Conv2dSame(self.config.z_channels, block_in, kernel_size=3) # middle res_blocks = nn.ModuleList() for _ in range(self.config.num_res_blocks): res_blocks.append(ResnetBlock(block_in, block_in, dropout_prob=self.config.dropout)) self.mid = res_blocks # upsampling upsample_blocks = [] for i_level in reversed(range(self.config.num_resolutions)): upsample_blocks.append(UpsamplingBlock(self.config, block_idx=i_level)) self.up = nn.ModuleList(list(reversed(upsample_blocks))) # reverse to get consistent order # end block_out = self.config.hidden_channels * self.config.channel_mult[0] self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True) self.conv_out = Conv2dSame(block_out, self.config.num_channels, kernel_size=3) def forward(self, hidden_states): # z to block_in hidden_states = self.conv_in(hidden_states) # middle for block in self.mid: hidden_states = block(hidden_states) # upsampling for block in reversed(self.up): hidden_states = block(hidden_states) # end hidden_states = self.norm_out(hidden_states) hidden_states = F.silu(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class VectorQuantizer(nn.Module): """ see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py Discretization bottleneck part of the VQ-VAE. """ def __init__(self, num_embeddings, embedding_dim, commitment_cost): r""" Args: num_embeddings: number of vectors in the quantized space. embedding_dim: dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta). """ super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.commitment_cost = commitment_cost self.embedding = nn.Embedding(num_embeddings, embedding_dim) self.embedding.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings) def forward(self, hidden_states, return_loss=False): """ Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width) quantization pipeline: 1. get encoder input (B,C,H,W) 2. flatten input to (B*H*W,C) """ # reshape z -> (batch, height, width, channel) and flatten hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() distances = self.compute_distances(hidden_states) min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1) min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states) min_encodings.scatter_(1, min_encoding_indices, 1) # get quantized latent vectors z_q = torch.matmul(min_encodings, self.embedding.weight).view(hidden_states.shape) # reshape to (batch, num_tokens) min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1) # compute loss for embedding loss = None if return_loss: loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean( (z_q - hidden_states.detach()) ** 2 ) # preserve gradients z_q = hidden_states + (z_q - hidden_states).detach() # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q, min_encoding_indices, loss def compute_distances(self, hidden_states): # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z hidden_states_flattended = hidden_states.reshape((-1, self.embedding_dim)) emb_weights = self.embedding.weight.t() inputs_norm_sq = hidden_states_flattended.pow(2.0).sum(dim=1, keepdim=True) codebook_t_norm_sq = emb_weights.pow(2.0).sum(dim=0, keepdim=True) distances = torch.addmm( inputs_norm_sq + codebook_t_norm_sq, hidden_states_flattended, emb_weights, alpha=-2.0, ) return distances def get_codebook_entry(self, indices): # indices are expected to be of shape (batch, num_tokens) # get quantized latent vectors if len(indices.shape) == 2: batch, num_tokens = indices.shape z_q = self.embedding(indices) z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2) elif len(indices.shape) == 3: batch, height, width = indices.shape indices = indices.view(batch, -1) z_q = self.embedding(indices) z_q = z_q.reshape(batch, height, width, -1).permute(0, 3, 1, 2) else: print(indices.shape) raise NotImplementedError return z_q # adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372 def get_soft_code(self, hidden_states, temp=1.0, stochastic=False): hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() # (batch, height, width, channel) distances = self.compute_distances(hidden_states) # (batch * height * width, num_embeddings) soft_code = F.softmax(-distances / temp, dim=-1) # (batch * height * width, num_embeddings) if stochastic: code = torch.multinomial(soft_code, 1) # (batch * height * width, 1) else: code = distances.argmin(dim=-1) # (batch * height * width) code = code.reshape(hidden_states.shape[0], -1) # (batch, height * width) batch, num_tokens = code.shape soft_code = soft_code.reshape(batch, num_tokens, -1) # (batch, height * width, num_embeddings) return soft_code, code def get_code(self, hidden_states): # reshape z -> (batch, height, width, channel) hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() distances = self.compute_distances(hidden_states) indices = torch.argmin(distances, axis=1).unsqueeze(1) indices = indices.reshape(hidden_states.shape[0], -1) return indices