# Reference: https://huggingface.co/spaces/FoundationVision/LlamaGen/blob/main/app.py from PIL import Image import gradio as gr from imagenet_classes import imagenet_idx2classname import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import time import demo_util import os import spaces from huggingface_hub import hf_hub_download os.system("pip3 install -U numpy") model2ckpt = { "TiTok-L-32": ("tokenizer_titok_l32.bin", "generator_titok_l32.bin"), } hf_hub_download(repo_id="fun-research/TiTok", filename="tokenizer_titok_l32.bin", local_dir="./") hf_hub_download(repo_id="fun-research/TiTok", filename="generator_titok_l32.bin", local_dir="./") # @spaces.GPU def load_model(): device = "cuda" #if torch.cuda.is_available() else "cpu" config = demo_util.get_config("configs/titok_l32.yaml") print(config) titok_tokenizer = demo_util.get_titok_tokenizer(config) print(titok_tokenizer) titok_generator = demo_util.get_titok_generator(config) print(titok_generator) titok_tokenizer = titok_tokenizer.to(device) titok_generator = titok_generator.to(device) return titok_tokenizer, titok_generator titok_tokenizer, titok_generator = load_model() @spaces.GPU def demo_infer( guidance_scale, randomize_temperature, num_sample_steps, class_label, seed): device = "cuda" # device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = titok_tokenizer #.to(device) generator = titok_generator #.to(device) n = 4 class_labels = [class_label for _ in range(n)] torch.manual_seed(seed) torch.cuda.manual_seed(seed) t1 = time.time() generated_image = demo_util.sample_fn( generator=generator, tokenizer=tokenizer, labels=class_labels, guidance_scale=guidance_scale, randomize_temperature=randomize_temperature, num_sample_steps=num_sample_steps, device=device ) sampling_time = time.time() - t1 print(f"generation takes about {sampling_time:.2f} seconds.") samples = [Image.fromarray(sample) for sample in generated_image] return samples with gr.Blocks() as demo: gr.Markdown("

An Image is Worth 32 Tokens for Reconstruction and Generation

") with gr.Tabs(): with gr.TabItem('Generate'): with gr.Row(): with gr.Column(): with gr.Row(): i1k_class = gr.Dropdown( list(imagenet_idx2classname.values()), value='Eskimo dog, husky', type="index", label='ImageNet-1K Class' ) guidance_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=3.5, label='Classifier-free Guidance Scale') randomize_temperature = gr.Slider(minimum=0., maximum=10.0, step=0.1, value=1.0, label='randomize_temperature') num_sample_steps = gr.Slider(minimum=1, maximum=32, step=1, value=8, label='num_sample_steps') seed = gr.Slider(minimum=0, maximum=1000, step=1, value=42, label='Seed') button = gr.Button("Generate", variant="primary") with gr.Column(): output = gr.Gallery(label='Generated Images', height=256, object_fit="contain") button.click(demo_infer, inputs=[ guidance_scale, randomize_temperature, num_sample_steps, i1k_class, seed], outputs=[output]) demo.queue() demo.launch(debug=True)