Spaces:
Runtime error
Runtime error
File size: 7,216 Bytes
a06fad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# kMaX-DeepLab Demo\n",
"This notebook is modified by Qihang Yu, with reference from [Mask2Former's script](https://colab.research.google.com/drive/1uIWE5KbGFSjrxey2aRd5pWkKNY1_SaNq)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Install detectron2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install detectron2\n",
"import torch\n",
"TORCH_VERSION = \".\".join(torch.__version__.split(\".\")[:2])\n",
"CUDA_VERSION = torch.__version__.split(\"+\")[-1]\n",
"print(\"torch: \", TORCH_VERSION, \"; cuda: \", CUDA_VERSION)\n",
"# Install detectron2 that matches the above pytorch version\n",
"# See https://detectron2.readthedocs.io/tutorials/install.html for instructions\n",
"!pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/$CUDA_VERSION/torch$TORCH_VERSION/index.html"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Install kMaX-DeepLab"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# clone and install kMaX-DeepLab\n",
"!git clone https://github.com/yucornetto/kmaxdeeplab_detectron2.git\n",
"%cd kmaxdeeplab_detectron2\n",
"!pip install -U opencv-python\n",
"!pip install git+https://github.com/cocodataset/panopticapi.git\n",
"!pip install -r requirements.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You may need to restart your runtime prior to this, to let your installation take effect\n",
"%cd /content/kmaxdeeplab_detectron2\n",
"# Some basic setup:\n",
"# Setup detectron2 logger\n",
"import detectron2\n",
"from detectron2.utils.logger import setup_logger\n",
"setup_logger()\n",
"setup_logger(name=\"kmax_deeplab\")\n",
"\n",
"# import some common libraries\n",
"import numpy as np\n",
"import cv2\n",
"import torch\n",
"from google.colab.patches import cv2_imshow\n",
"\n",
"# import some common detectron2 utilities\n",
"from detectron2 import model_zoo\n",
"from detectron2.engine import DefaultPredictor\n",
"from detectron2.config import get_cfg\n",
"from detectron2.utils.visualizer import Visualizer, ColorMode\n",
"from detectron2.data import MetadataCatalog\n",
"from detectron2.projects.deeplab import add_deeplab_config\n",
"coco_metadata = MetadataCatalog.get(\"coco_2017_val_panoptic\")\n",
"\n",
"# import Mask2Former project\n",
"from kmax_deeplab import add_kmax_deeplab_config"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Run a pre-trained Mask2Former model\n",
"We first download an image from the COCO dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget http://images.cocodataset.org/val2017/000000005477.jpg -q -O input.jpg\n",
"im = cv2.imread(\"./input.jpg\")\n",
"cv2_imshow(im)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we create a detectron2 config and a detectron2 `DefaultPredictor` to run inference on this image."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cfg = get_cfg()\n",
"add_deeplab_config(cfg)\n",
"add_kmax_deeplab_config(cfg)\n",
"cfg.merge_from_file(\"configs/coco/panoptic-segmentation/kmax_convnext_large.yaml\")\n",
"cfg.MODEL.WEIGHTS = 'https://drive.google.com/uc?id=1b6rEnKw4PNTdqSdWpmb0P9dsvN0pkOiN&export=download'\n",
"cfg.MODEL.KMAX_DEEPLAB.TEST.SEMANTIC_ON = True\n",
"cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON = True\n",
"cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON = True\n",
"predictor = DefaultPredictor(cfg)\n",
"outputs = predictor(im)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Show panoptic/instance/semantic predictions: \n",
"v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)\n",
"panoptic_result = v.draw_panoptic_seg(outputs[\"panoptic_seg\"][0].to(\"cpu\"), outputs[\"panoptic_seg\"][1]).get_image()\n",
"v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)\n",
"instance_result = v.draw_instance_predictions(outputs[\"instances\"].to(\"cpu\")).get_image()\n",
"v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)\n",
"semantic_result = v.draw_sem_seg(outputs[\"sem_seg\"].argmax(0).to(\"cpu\")).get_image()\n",
"print(\"Panoptic segmentation (top), instance segmentation (middle), semantic segmentation (bottom)\")\n",
"cv2_imshow(np.concatenate((panoptic_result, instance_result, semantic_result), axis=0)[:, :, ::-1])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's try an image not from COCO as well:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download a sample image and display. Replace path here to try your own images!\n",
"!wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg\n",
"im = cv2.imread(\"./desk.jpg\")\n",
"cv2_imshow(im)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"outputs = predictor(im)\n",
"# Show panoptic/instance/semantic predictions: \n",
"v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)\n",
"panoptic_result = v.draw_panoptic_seg(outputs[\"panoptic_seg\"][0].to(\"cpu\"), outputs[\"panoptic_seg\"][1]).get_image()\n",
"v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)\n",
"instance_result = v.draw_instance_predictions(outputs[\"instances\"].to(\"cpu\")).get_image()\n",
"v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)\n",
"semantic_result = v.draw_sem_seg(outputs[\"sem_seg\"].argmax(0).to(\"cpu\")).get_image()\n",
"print(\"Panoptic segmentation (top), instance segmentation (middle), semantic segmentation (bottom)\")\n",
"cv2_imshow(np.concatenate((panoptic_result, instance_result, semantic_result), axis=0)[:, :, ::-1])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.6 (default, Oct 18 2022, 12:41:40) \n[Clang 14.0.0 (clang-1400.0.29.202)]"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|