File size: 7,509 Bytes
a06fad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/data/datasets/register_coco_panoptic_annos_semseg.py

import json
import os

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets import load_sem_seg
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
from detectron2.utils.file_io import PathManager


_PREDEFINED_SPLITS_COCO_PANOPTIC = {
    "coco_2017_train_panoptic": (
        # This is the original panoptic annotation directory
        "coco/panoptic_train2017",
        "coco/annotations/panoptic_train2017.json",
        # This directory contains semantic annotations that are
        # converted from panoptic annotations.
        # It is used by PanopticFPN.
        # You can use the script at detectron2/datasets/prepare_panoptic_fpn.py
        # to create these directories.
        "coco/panoptic_semseg_train2017",
    ),
    "coco_2017_val_panoptic": (
        "coco/panoptic_val2017",
        "coco/annotations/panoptic_val2017.json",
        "coco/panoptic_semseg_val2017",
    ),
}


def get_metadata():
    meta = {}
    # The following metadata maps contiguous id from [0, #thing categories +
    # #stuff categories) to their names and colors. We have to replica of the
    # same name and color under "thing_*" and "stuff_*" because the current
    # visualization function in D2 handles thing and class classes differently
    # due to some heuristic used in Panoptic FPN. We keep the same naming to
    # enable reusing existing visualization functions.
    thing_classes = [k["name"] for k in COCO_CATEGORIES if k["isthing"] == 1]
    thing_colors = [k["color"] for k in COCO_CATEGORIES if k["isthing"] == 1]
    stuff_classes = [k["name"] for k in COCO_CATEGORIES]
    stuff_colors = [k["color"] for k in COCO_CATEGORIES]

    meta["thing_classes"] = thing_classes
    meta["thing_colors"] = thing_colors
    meta["stuff_classes"] = stuff_classes
    meta["stuff_colors"] = stuff_colors

    # Convert category id for training:
    #   category id: like semantic segmentation, it is the class id for each
    #   pixel. Since there are some classes not used in evaluation, the category
    #   id is not always contiguous and thus we have two set of category ids:
    #       - original category id: category id in the original dataset, mainly
    #           used for evaluation.
    #       - contiguous category id: [0, #classes), in order to train the linear
    #           softmax classifier.
    thing_dataset_id_to_contiguous_id = {}
    stuff_dataset_id_to_contiguous_id = {}

    for i, cat in enumerate(COCO_CATEGORIES):
        if cat["isthing"]:
            thing_dataset_id_to_contiguous_id[cat["id"]] = i
        # else:
        #     stuff_dataset_id_to_contiguous_id[cat["id"]] = i

        # in order to use sem_seg evaluator
        stuff_dataset_id_to_contiguous_id[cat["id"]] = i

    meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id
    meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id

    return meta


def load_coco_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta):
    """
    Args:
        image_dir (str): path to the raw dataset. e.g., "~/coco/train2017".
        gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017".
        json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json".
    Returns:
        list[dict]: a list of dicts in Detectron2 standard format. (See
        `Using Custom Datasets </tutorials/datasets.html>`_ )
    """

    def _convert_category_id(segment_info, meta):
        if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]:
            segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][
                segment_info["category_id"]
            ]
            segment_info["isthing"] = True
        else:
            segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][
                segment_info["category_id"]
            ]
            segment_info["isthing"] = False
        return segment_info

    with PathManager.open(json_file) as f:
        json_info = json.load(f)

    ret = []
    for ann in json_info["annotations"]:
        image_id = int(ann["image_id"])
        # TODO: currently we assume image and label has the same filename but
        # different extension, and images have extension ".jpg" for COCO. Need
        # to make image extension a user-provided argument if we extend this
        # function to support other COCO-like datasets.
        image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg")
        label_file = os.path.join(gt_dir, ann["file_name"])
        sem_label_file = os.path.join(semseg_dir, ann["file_name"])
        segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]]
        ret.append(
            {
                "file_name": image_file,
                "image_id": image_id,
                "pan_seg_file_name": label_file,
                "sem_seg_file_name": sem_label_file,
                "segments_info": segments_info,
            }
        )
    assert len(ret), f"No images found in {image_dir}!"
    assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"]
    assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"]
    assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"]
    return ret


def register_coco_panoptic_annos_sem_seg(
    name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json
):
    panoptic_name = name
    delattr(MetadataCatalog.get(panoptic_name), "thing_classes")
    delattr(MetadataCatalog.get(panoptic_name), "thing_colors")
    MetadataCatalog.get(panoptic_name).set(
        thing_classes=metadata["thing_classes"],
        thing_colors=metadata["thing_colors"],
        # thing_dataset_id_to_contiguous_id=metadata["thing_dataset_id_to_contiguous_id"],
    )

    # the name is "coco_2017_train_panoptic_with_sem_seg" and "coco_2017_val_panoptic_with_sem_seg"
    semantic_name = name + "_with_sem_seg"
    DatasetCatalog.register(
        semantic_name,
        lambda: load_coco_panoptic_json(panoptic_json, image_root, panoptic_root, sem_seg_root, metadata),
    )
    MetadataCatalog.get(semantic_name).set(
        sem_seg_root=sem_seg_root,
        panoptic_root=panoptic_root,
        image_root=image_root,
        panoptic_json=panoptic_json,
        json_file=instances_json,
        evaluator_type="coco_panoptic_seg",
        ignore_label=255,
        label_divisor=1000,
        **metadata,
    )


def register_all_coco_panoptic_annos_sem_seg(root):
    for (
        prefix,
        (panoptic_root, panoptic_json, semantic_root),
    ) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items():
        prefix_instances = prefix[: -len("_panoptic")]
        instances_meta = MetadataCatalog.get(prefix_instances)
        image_root, instances_json = instances_meta.image_root, instances_meta.json_file

        register_coco_panoptic_annos_sem_seg(
            prefix,
            get_metadata(),
            image_root,
            os.path.join(root, panoptic_root),
            os.path.join(root, panoptic_json),
            os.path.join(root, semantic_root),
            instances_json,
        )


_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_all_coco_panoptic_annos_sem_seg(_root)