File size: 21,495 Bytes
a06fad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/maskformer_model.py
# Reference: https://github.com/google-research/deeplab2/blob/main/model/kmax_deeplab.py
# Reference: https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py
# Modified by Qihang Yu

from typing import Tuple, List

import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances
from detectron2.utils.memory import retry_if_cuda_oom

from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher
from torch.cuda.amp import autocast


@META_ARCH_REGISTRY.register()
class kMaXDeepLab(nn.Module):
    """
    Main class for mask classification semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        criterion: nn.Module,
        num_queries: int,
        object_mask_threshold: float,
        class_threshold_thing: float,
        class_threshold_stuff: float,
        overlap_threshold: float,
        reorder_class_weight: float,
        reorder_mask_weight: float,
        metadata,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        # inference
        semantic_on: bool,
        panoptic_on: bool,
        instance_on: bool,
        test_topk_per_image: int,
        input_shape: List[int]
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            criterion: a module that defines the loss
            num_queries: int, number of queries
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            sem_seg_postprocess_before_inference: whether to resize the prediction back
                to original input size before semantic segmentation inference or after.
                For high-resolution dataset like Mapillary, resizing predictions before
                inference will cause OOM error.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            semantic_on: bool, whether to output semantic segmentation prediction
            instance_on: bool, whether to output instance segmentation prediction
            panoptic_on: bool, whether to output panoptic segmentation prediction
            test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        self.criterion = criterion
        self.num_queries = num_queries
        self.overlap_threshold = overlap_threshold
        self.object_mask_threshold = object_mask_threshold
        self.class_threshold_thing = class_threshold_thing
        self.class_threshold_stuff = class_threshold_stuff
        self.reorder_class_weight = reorder_class_weight
        self.reorder_mask_weight = reorder_mask_weight
        self.metadata = metadata
        if size_divisibility < 0:
            # use backbone size_divisibility if not set
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility
        self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

        # additional args
        self.semantic_on = semantic_on
        self.instance_on = instance_on
        self.panoptic_on = panoptic_on
        self.test_topk_per_image = test_topk_per_image

        if not self.semantic_on:
            assert self.sem_seg_postprocess_before_inference

        self.input_shape = input_shape

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())

        # Loss parameters:
        deep_supervision = cfg.MODEL.KMAX_DEEPLAB.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.KMAX_DEEPLAB.NO_OBJECT_WEIGHT
        share_final_matching = cfg.MODEL.KMAX_DEEPLAB.SHARE_FINAL_MATCHING

        # loss weights
        class_weight = cfg.MODEL.KMAX_DEEPLAB.CLASS_WEIGHT
        dice_weight = cfg.MODEL.KMAX_DEEPLAB.DICE_WEIGHT
        mask_weight = cfg.MODEL.KMAX_DEEPLAB.MASK_WEIGHT
        insdis_weight = cfg.MODEL.KMAX_DEEPLAB.INSDIS_WEIGHT
        aux_semantic_weight = cfg.MODEL.KMAX_DEEPLAB.AUX_SEMANTIC_WEIGHT

        # building criterion
        matcher = HungarianMatcher()

        weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight,
        "loss_pixel_insdis": insdis_weight, "loss_aux_semantic": aux_semantic_weight}

        if deep_supervision:
            dec_layers = sum(cfg.MODEL.KMAX_DEEPLAB.TRANS_DEC.DEC_LAYERS)
            aux_weight_dict = {}
            for i in range(dec_layers):
                aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)

        losses = ["labels", "masks"]
        if insdis_weight > 0:
            losses += ["pixels"]
        if aux_semantic_weight > 0:
            losses += ["aux_semantic"]

        criterion = SetCriterion(
            sem_seg_head.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            eos_coef=no_object_weight,
            losses=losses,
            share_final_matching=share_final_matching,
            pixel_insdis_temperature=cfg.MODEL.KMAX_DEEPLAB.PIXEL_INSDIS_TEMPERATURE,
            pixel_insdis_sample_k=cfg.MODEL.KMAX_DEEPLAB.PIXEL_INSDIS_SAMPLE_K,
            aux_semantic_temperature=cfg.MODEL.KMAX_DEEPLAB.AUX_SEMANTIC_TEMPERATURE,
            aux_semantic_sample_k=cfg.MODEL.KMAX_DEEPLAB.UX_SEMANTIC_SAMPLE_K
        )

        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "criterion": criterion,
            "num_queries": cfg.MODEL.KMAX_DEEPLAB.TRANS_DEC.NUM_OBJECT_QUERIES,
            "object_mask_threshold": cfg.MODEL.KMAX_DEEPLAB.TEST.OBJECT_MASK_THRESHOLD,
            "class_threshold_thing": cfg.MODEL.KMAX_DEEPLAB.TEST.CLASS_THRESHOLD_THING,
            "class_threshold_stuff": cfg.MODEL.KMAX_DEEPLAB.TEST.CLASS_THRESHOLD_STUFF,
            "overlap_threshold": cfg.MODEL.KMAX_DEEPLAB.TEST.OVERLAP_THRESHOLD,
            "reorder_class_weight": cfg.MODEL.KMAX_DEEPLAB.TEST.REORDER_CLASS_WEIGHT,
            "reorder_mask_weight": cfg.MODEL.KMAX_DEEPLAB.TEST.REORDER_MASK_WEIGHT,
            "metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
            "size_divisibility": cfg.MODEL.KMAX_DEEPLAB.SIZE_DIVISIBILITY,
            "sem_seg_postprocess_before_inference": (
                cfg.MODEL.KMAX_DEEPLAB.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
                or cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON
                or cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON
            ),
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            # inference
            "semantic_on": cfg.MODEL.KMAX_DEEPLAB.TEST.SEMANTIC_ON,
            "instance_on": cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON,
            "panoptic_on": cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON,
            "test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
            "input_shape": cfg.INPUT.IMAGE_SIZE
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        if "is_real_pixels" in batched_inputs[0]:
            is_real_pixels = [x["is_real_pixels"] for x in batched_inputs]
            # Set all padded pixel values to 0.
            images = [x * y.to(x) for x, y in zip(images, is_real_pixels)]

        # We perform zero padding to ensure input shape equal to self.input_shape.
        # The padding is done on the right and bottom sides. 
        for idx in range(len(images)):
            cur_height, cur_width = images[idx].shape[-2:]
            padding = (0, max(0, self.input_shape[1] - cur_width), 0, max(0, self.input_shape[0] - cur_height), 0, 0)
            images[idx] = F.pad(images[idx], padding, value=0)
        images = ImageList.from_tensors(images, -1)

        if self.training:
            # mask classification target
            if "instances" in batched_inputs[0]:
                gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
                gt_semantic = [x["sem_seg_gt"].to(self.device) for x in batched_inputs]
                targets = self.prepare_targets(gt_instances, gt_semantic, images)
            else:
                targets = None

        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features)

        if self.training:

            with autocast(enabled=False):
                # bipartite matching-based loss
                for output_key in ["pixel_feature", "pred_masks", "pred_logits", "aux_semantic_pred"]:
                    if output_key in outputs:
                        outputs[output_key] = outputs[output_key].float()
                for i in range(len(outputs["aux_outputs"])):
                    for output_key in ["pixel_feature", "pred_masks", "pred_logits"]:
                        outputs["aux_outputs"][i][output_key] = outputs["aux_outputs"][i][output_key].float()
                
                losses = self.criterion(outputs, targets)

                for k in list(losses.keys()):
                    if k in self.criterion.weight_dict:
                        losses[k] *= self.criterion.weight_dict[k]
                    else:
                        # remove this loss if not specified in `weight_dict`
                        losses.pop(k)
                return losses
        else:
            mask_cls_results = outputs["pred_logits"]
            mask_pred_results = outputs["pred_masks"]

            align_corners = (images.tensor.shape[-1] % 2 == 1) 
            # upsample masks
            mask_pred_results = F.interpolate(
                mask_pred_results,
                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
                mode="bilinear",
                align_corners=align_corners,
            )

            del outputs

            processed_results = []
            for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
                mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
            ):
                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])
                cur_image = input_per_image["image"].to(self.device)
                processed_results.append({})
                scale_factor = max(images.tensor.shape[-2:]) / max(height, width)
                ori_height, ori_width = round(height * scale_factor), round(width * scale_factor)
                mask_pred_result = mask_pred_result[:, :ori_height, :ori_width].expand(1, -1, -1, -1)
                cur_image = cur_image[:, :ori_height, :ori_width].expand(1, -1, -1, -1)
                mask_pred_result = F.interpolate(
                    mask_pred_result, size=(height, width), mode="bilinear", align_corners=align_corners
                )[0]
                cur_image = F.interpolate(
                    cur_image.float(), size=(height, width), mode="bilinear", align_corners=align_corners
                )[0].to(torch.uint8)

                if self.sem_seg_postprocess_before_inference:
                    mask_cls_result = mask_cls_result.to(mask_pred_result)

                # semantic segmentation inference
                if self.semantic_on:
                    r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
                    if not self.sem_seg_postprocess_before_inference:
                        r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
                    processed_results[-1]["sem_seg"] = r

                # panoptic segmentation inference
                if self.panoptic_on:
                    panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
                    processed_results[-1]["panoptic_seg"] = panoptic_r
                    processed_results[-1]["original_image"] = cur_image
                
                # instance segmentation inference
                if self.instance_on:
                    instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
                    processed_results[-1]["instances"] = instance_r

            return processed_results

    def prepare_targets(self, targets, targets_semantic, images):
        new_targets = []
        for targets_per_image, semantic_gt_mask in zip(targets, targets_semantic):
            gt_masks = targets_per_image.gt_masks
            new_targets.append(
                {
                    "labels": targets_per_image.gt_classes,
                    "masks": gt_masks,
                    "semantic_masks": semantic_gt_mask
                }
            )
        return new_targets

    def semantic_inference(self, mask_cls, mask_pred):
        # For cls prob, we exluced the void class following
        # https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L199
        mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        mask_pred = F.softmax(mask_pred, dim=0)
        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
        return semseg

    def panoptic_inference(self, mask_cls, mask_pred):
        # mask_cls: N x C
        # mask_pred: N x H x W
        # some hyper-params
        num_mask_slots = mask_pred.shape[0]
        cls_threshold_thing = self.class_threshold_thing
        cls_threshold_stuff = self.class_threshold_stuff
        object_mask_threshold = self.object_mask_threshold
        overlap_threshold = self.overlap_threshold
        reorder_class_weight = self.reorder_class_weight
        reorder_mask_weight = self.reorder_mask_weight

        # https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L675
        # https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L199
        cls_scores, cls_labels = F.softmax(mask_cls, dim=-1)[..., :-1].max(-1) # N
        mask_scores = F.softmax(mask_pred, dim=0)
        binary_masks = mask_scores > object_mask_threshold # N x H x W
        mask_scores_flat = mask_scores.flatten(1) # N x HW
        binary_masks_flat = binary_masks.flatten(1).float() # N x HW
        pixel_number_flat = binary_masks_flat.sum(1) # N
        mask_scores_flat = (mask_scores_flat * binary_masks_flat).sum(1) / torch.clamp(pixel_number_flat, min=1.0) # N

        reorder_score = (cls_scores ** reorder_class_weight) * (mask_scores_flat ** reorder_mask_weight) # N
        reorder_indices = torch.argsort(reorder_score, dim=-1, descending=True)

        panoptic_seg = torch.zeros((mask_pred.shape[1], mask_pred.shape[2]),
         dtype=torch.int32, device=mask_pred.device)
        segments_info = []

        current_segment_id = 0
        stuff_memory_list = {}
        for i in range(num_mask_slots):
            cur_idx = reorder_indices[i].item() # 1
            cur_binary_mask = binary_masks[cur_idx] # H x W
            cur_cls_score = cls_scores[cur_idx].item() # 1 
            cur_cls_label = cls_labels[cur_idx].item() # 1
            is_thing = cur_cls_label in self.metadata.thing_dataset_id_to_contiguous_id.values()
            is_confident = (is_thing and cur_cls_score > cls_threshold_thing) or (
                (not is_thing) and cur_cls_score > cls_threshold_stuff)

            original_pixel_number = cur_binary_mask.float().sum()
            new_binary_mask = torch.logical_and(cur_binary_mask, (panoptic_seg == 0))
            new_pixel_number = new_binary_mask.float().sum()
            is_not_overlap_too_much = new_pixel_number > (original_pixel_number * overlap_threshold)

            if is_confident and is_not_overlap_too_much:
                # merge stuff regions
                if not is_thing:
                    if int(cur_cls_label) in stuff_memory_list.keys():
                        panoptic_seg[new_binary_mask] = stuff_memory_list[int(cur_cls_label)]
                        continue
                    else:
                        stuff_memory_list[int(cur_cls_label)] = current_segment_id + 1

                current_segment_id += 1                
                panoptic_seg[new_binary_mask] = current_segment_id

                segments_info.append(
                    {
                        "id": current_segment_id,
                        "isthing": bool(is_thing),
                        "category_id": int(cur_cls_label),
                    }
                )

        return panoptic_seg, segments_info


    def instance_inference(self, mask_cls, mask_pred):
        # mask_pred is already processed to have the same shape as original input
        image_size = mask_pred.shape[-2:]

        mask_pred = mask_pred.softmax(dim=0)
        # [Q, K]
        scores = F.softmax(mask_cls[:, :-1], dim=-1)
        labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
        scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
        labels_per_image = labels[topk_indices]

        topk_indices = topk_indices // self.sem_seg_head.num_classes
        mask_pred = mask_pred[topk_indices]

        # if this is panoptic segmentation, we only keep the "thing" classes
        if self.panoptic_on:
            keep = torch.zeros_like(scores_per_image).bool()
            for i, lab in enumerate(labels_per_image):
                keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()

            scores_per_image = scores_per_image[keep]
            labels_per_image = labels_per_image[keep]
            mask_pred = mask_pred[keep]

        result = Instances(image_size)
        result.pred_masks = (mask_pred > self.object_mask_threshold).float()
        result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
        # Uncomment the following to get boxes from masks (this is slow)
        # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()

        # calculate average mask prob
        mask_scores_per_image = (mask_pred.flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
        result.scores = scores_per_image * mask_scores_per_image
        result.pred_classes = labels_per_image
        return result