File size: 8,725 Bytes
a06fad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import itertools
import os

from typing import List, Optional

import torch
import numpy as np
import tempfile
from collections import OrderedDict
from PIL import Image
from tabulate import tabulate
import json
import contextlib

import detectron2.utils.comm as comm
from detectron2.utils.file_io import PathManager
from detectron2.data import MetadataCatalog
from detectron2.evaluation import COCOPanopticEvaluator

from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
import io
import math
from PIL import Image

from detectron2.solver.lr_scheduler import _get_warmup_factor_at_iter


import logging

logger = logging.getLogger(__name__)


class TF2WarmupPolyLR(torch.optim.lr_scheduler._LRScheduler):
    """
    Poly learning rate schedule used in TF DeepLab2.
    Reference: https://github.com/google-research/deeplab2/blob/main/trainer/trainer_utils.py#L23
    """

    def __init__(
        self,
        optimizer: torch.optim.Optimizer,
        max_iters: int,
        warmup_factor: float = 0.001,
        warmup_iters: int = 1000,
        warmup_method: str = "linear",
        last_epoch: int = -1,
        power: float = 0.9,
        constant_ending: float = 0.0,
    ):
        self.max_iters = max_iters
        self.warmup_factor = warmup_factor
        self.warmup_iters = warmup_iters
        self.warmup_method = warmup_method
        self.power = power
        self.constant_ending = constant_ending
        super().__init__(optimizer, last_epoch)

    def get_lr(self) -> List[float]:
        warmup_factor = _get_warmup_factor_at_iter(
            self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor
        )
        if self.constant_ending > 0 and warmup_factor == 1.0:
            # Constant ending lr.
            if (
                math.pow((1.0 - self.last_epoch / self.max_iters), self.power)
                < self.constant_ending
            ):
                return [base_lr * self.constant_ending for base_lr in self.base_lrs]
        if self.last_epoch < self.warmup_iters:
            return [
            base_lr * warmup_factor
            for base_lr in self.base_lrs
        ]
        else:
            return [
                base_lr * math.pow((1.0 - self.last_epoch / self.max_iters), self.power)
                for base_lr in self.base_lrs
            ]

    def _compute_values(self) -> List[float]:
        # The new interface
        return self.get_lr()


class COCOPanopticEvaluatorwithVis(COCOPanopticEvaluator):
    """
    COCO Panoptic Evaluator that supports saving visualizations.
    TODO(qihangyu): Note that original implementation will also write all predictions to a tmp folder
        and then run official evaluation script, we may also check how to copy from the tmp folder for visualization.
    """

    def __init__(self, dataset_name: str, output_dir: Optional[str] = None, save_vis_num=0):
        super().__init__(dataset_name=dataset_name, output_dir=output_dir)
        self.metadata = MetadataCatalog.get("coco_2017_val_panoptic_with_sem_seg")
        self.output_dir = output_dir
        self.save_vis_num = save_vis_num

    def process(self, inputs, outputs):
        from panopticapi.utils import id2rgb

        cur_save_num = 0
        for input, output in zip(inputs, outputs):
            panoptic_img, segments_info = output["panoptic_seg"]
            panoptic_seg = panoptic_img.cpu()
            panoptic_img = panoptic_seg.numpy()

            file_name = os.path.basename(input["file_name"])
            file_name_png = os.path.splitext(file_name)[0] + ".png"
            if cur_save_num < self.save_vis_num:
                image = output["original_image"]
                image = image.permute(1, 2 ,0).cpu().numpy()#[:, :, ::-1]
                visualizer = Visualizer(image, self.metadata, instance_mode=ColorMode.IMAGE)
                vis_output = visualizer.draw_panoptic_seg_predictions(
                    panoptic_seg, segments_info
                )
                if not os.path.exists(os.path.join(self.output_dir, 'vis')):
                    os.makedirs(os.path.join(self.output_dir, 'vis'))
                out_filename = os.path.join(self.output_dir, 'vis', file_name_png)
                vis_output.save(out_filename)
                cur_save_num += 1

            if segments_info is None:
                # If "segments_info" is None, we assume "panoptic_img" is a
                # H*W int32 image storing the panoptic_id in the format of
                # category_id * label_divisor + instance_id. We reserve -1 for
                # VOID label, and add 1 to panoptic_img since the official
                # evaluation script uses 0 for VOID label.
                label_divisor = self._metadata.label_divisor
                segments_info = []
                for panoptic_label in np.unique(panoptic_img):
                    if panoptic_label == -1:
                        # VOID region.
                        continue
                    pred_class = panoptic_label // label_divisor
                    isthing = (
                        pred_class in self._metadata.thing_dataset_id_to_contiguous_id.values()
                    )
                    segments_info.append(
                        {
                            "id": int(panoptic_label) + 1,
                            "category_id": int(pred_class),
                            "isthing": bool(isthing),
                        }
                    )
                # Official evaluation script uses 0 for VOID label.
                panoptic_img += 1

            
            with io.BytesIO() as out:
                Image.fromarray(id2rgb(panoptic_img)).save(out, format="PNG")
                segments_info = [self._convert_category_id(x) for x in segments_info]
                self._predictions.append(
                    {
                        "image_id": input["image_id"],
                        "file_name": file_name_png,
                        "png_string": out.getvalue(),
                        "segments_info": segments_info,
                    }
                )

    def evaluate(self):
        comm.synchronize()

        self._predictions = comm.gather(self._predictions)
        self._predictions = list(itertools.chain(*self._predictions))
        if not comm.is_main_process():
            return

        # PanopticApi requires local files
        gt_json = PathManager.get_local_path(self._metadata.panoptic_json)
        gt_folder = PathManager.get_local_path(self._metadata.panoptic_root)

        with tempfile.TemporaryDirectory(prefix="panoptic_eval") as pred_dir:
            logger.info("Writing all panoptic predictions to {} ...".format(pred_dir))
            for p in self._predictions:
                with open(os.path.join(pred_dir, p["file_name"]), "wb") as f:
                    f.write(p.pop("png_string"))

            with open(gt_json, "r") as f:
                json_data = json.load(f)
            json_data["annotations"] = self._predictions

            output_dir = self._output_dir or pred_dir
            predictions_json = os.path.join(output_dir, "predictions.json")
            with PathManager.open(predictions_json, "w") as f:
                f.write(json.dumps(json_data))

            from kmax_deeplab.evaluation.panoptic_evaluation import pq_compute

            with contextlib.redirect_stdout(io.StringIO()):
                pq_res = pq_compute(
                    gt_json,
                    PathManager.get_local_path(predictions_json),
                    gt_folder=gt_folder,
                    pred_folder=pred_dir,
                )

        res = {}
        res["PQ"] = 100 * pq_res["All"]["pq"]
        res["SQ"] = 100 * pq_res["All"]["sq"]
        res["RQ"] = 100 * pq_res["All"]["rq"]
        res["PQ_th"] = 100 * pq_res["Things"]["pq"]
        res["SQ_th"] = 100 * pq_res["Things"]["sq"]
        res["RQ_th"] = 100 * pq_res["Things"]["rq"]
        res["PQ_st"] = 100 * pq_res["Stuff"]["pq"]
        res["SQ_st"] = 100 * pq_res["Stuff"]["sq"]
        res["RQ_st"] = 100 * pq_res["Stuff"]["rq"]

        results = OrderedDict({"panoptic_seg": res})
        _print_panoptic_results(pq_res)

        return results


def _print_panoptic_results(pq_res):
    headers = ["", "PQ", "SQ", "RQ", "#categories"]
    data = []
    for name in ["All", "Things", "Stuff"]:
        row = [name] + [pq_res[name][k] * 100 for k in ["pq", "sq", "rq"]] + [pq_res[name]["n"]]
        data.append(row)
    table = tabulate(
        data, headers=headers, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center"
    )
    logger.info("Panoptic Evaluation Results:\n" + table)