Spaces:
Runtime error
Runtime error
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/train_net.py | |
# Modified by Qihang Yu | |
try: | |
# ignore ShapelyDeprecationWarning from fvcore | |
from shapely.errors import ShapelyDeprecationWarning | |
import warnings | |
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning) | |
except: | |
pass | |
import copy | |
import itertools | |
import os | |
from typing import Any, Dict, List, Set | |
import torch | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import MetadataCatalog, build_detection_train_loader, build_detection_test_loader | |
from detectron2.engine import ( | |
DefaultTrainer, | |
default_argument_parser, | |
default_setup, | |
launch, | |
) | |
from detectron2.evaluation import ( | |
COCOEvaluator, | |
DatasetEvaluators, | |
SemSegEvaluator, | |
verify_results, | |
) | |
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler | |
from detectron2.solver.build import maybe_add_gradient_clipping | |
from detectron2.utils.logger import setup_logger | |
# MaskFormer | |
from kmax_deeplab import ( | |
COCOPanoptickMaXDeepLabDatasetMapper, | |
add_kmax_deeplab_config, | |
) | |
from detectron2.data import MetadataCatalog | |
import train_net_utils | |
class Trainer(DefaultTrainer): | |
""" | |
Extension of the Trainer class adapted to MaskFormer. | |
""" | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
""" | |
Create evaluator(s) for a given dataset. | |
This uses the special metadata "evaluator_type" associated with each | |
builtin dataset. For your own dataset, you can simply create an | |
evaluator manually in your script and do not have to worry about the | |
hacky if-else logic here. | |
""" | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
evaluator_list = [] | |
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type | |
# panoptic segmentation | |
if evaluator_type in [ | |
"coco_panoptic_seg", | |
]: | |
if cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON: | |
evaluator_list.append(train_net_utils.COCOPanopticEvaluatorwithVis(dataset_name, output_folder, save_vis_num=cfg.MODEL.KMAX_DEEPLAB.SAVE_VIS_NUM)) | |
# COCO | |
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON: | |
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) | |
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.KMAX_DEEPLAB.TEST.SEMANTIC_ON: | |
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder)) | |
elif len(evaluator_list) == 1: | |
return evaluator_list[0] | |
return DatasetEvaluators(evaluator_list) | |
def build_train_loader(cls, cfg): | |
# Semantic segmentation dataset mapper | |
if cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj": | |
mapper = COCOPanoptickMaXDeepLabDatasetMapper(cfg, True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
else: | |
mapper = None | |
return build_detection_train_loader(cfg, mapper=mapper) | |
def build_lr_scheduler(cls, cfg, optimizer): | |
""" | |
It now calls :func:`detectron2.solver.build_lr_scheduler`. | |
Overwrite it if you'd like a different scheduler. | |
""" | |
name = cfg.SOLVER.LR_SCHEDULER_NAME | |
if name == "TF2WarmupPolyLR": | |
return train_net_utils.TF2WarmupPolyLR( | |
optimizer, | |
cfg.SOLVER.MAX_ITER, | |
warmup_factor=cfg.SOLVER.WARMUP_FACTOR, | |
warmup_iters=cfg.SOLVER.WARMUP_ITERS, | |
warmup_method=cfg.SOLVER.WARMUP_METHOD, | |
power=cfg.SOLVER.POLY_LR_POWER, | |
constant_ending=cfg.SOLVER.POLY_LR_CONSTANT_ENDING, | |
) | |
else: | |
return build_lr_scheduler(cfg, optimizer) | |
def build_optimizer(cls, cfg, model): | |
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM | |
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED | |
defaults = {} | |
defaults["lr"] = cfg.SOLVER.BASE_LR | |
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY | |
from kmax_deeplab.modeling.backbone.convnext import LayerNorm | |
norm_module_types = ( | |
torch.nn.BatchNorm1d, | |
torch.nn.BatchNorm2d, | |
torch.nn.BatchNorm3d, | |
torch.nn.SyncBatchNorm, | |
# NaiveSyncBatchNorm inherits from BatchNorm2d | |
torch.nn.GroupNorm, | |
torch.nn.InstanceNorm1d, | |
torch.nn.InstanceNorm2d, | |
torch.nn.InstanceNorm3d, | |
torch.nn.LayerNorm, | |
torch.nn.LocalResponseNorm, | |
LayerNorm | |
) | |
params: List[Dict[str, Any]] = [] | |
memo: Set[torch.nn.parameter.Parameter] = set() | |
for module_name, module in model.named_modules(): | |
for module_param_name, value in module.named_parameters(recurse=False): | |
if not value.requires_grad: | |
continue | |
# Avoid duplicating parameters | |
if value in memo: | |
continue | |
memo.add(value) | |
hyperparams = copy.copy(defaults) | |
hyperparams["name"] = (module_name, module_param_name) | |
if "backbone" in module_name: | |
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER | |
if ( | |
"relative_position_bias_table" in module_param_name | |
or "absolute_pos_embed" in module_param_name | |
): | |
print(module_param_name) | |
hyperparams["weight_decay"] = 0.0 | |
if isinstance(module, norm_module_types): | |
hyperparams["weight_decay"] = weight_decay_norm | |
if isinstance(module, torch.nn.Embedding): | |
hyperparams["weight_decay"] = weight_decay_embed | |
# Rule for kMaX. | |
if "_rpe" in module_name: | |
# relative positional embedding in axial attention. | |
hyperparams["weight_decay"] = 0.0 | |
if "_cluster_centers" in module_name: | |
# cluster center embeddings. | |
hyperparams["weight_decay"] = 0.0 | |
if "bias" in module_param_name: | |
# any bias terms. | |
hyperparams["weight_decay"] = 0.0 | |
if "gamma" in module_param_name: | |
# gamma term in convnext | |
hyperparams["weight_decay"] = 0.0 | |
params.append({"params": [value], **hyperparams}) | |
for param_ in params: | |
print(param_["name"], param_["lr"], param_["weight_decay"]) | |
def maybe_add_full_model_gradient_clipping(optim): | |
# detectron2 doesn't have full model gradient clipping now | |
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE | |
enable = ( | |
cfg.SOLVER.CLIP_GRADIENTS.ENABLED | |
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" | |
and clip_norm_val > 0.0 | |
) | |
class FullModelGradientClippingOptimizer(optim): | |
def step(self, closure=None): | |
all_params = itertools.chain(*[x["params"] for x in self.param_groups]) | |
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) | |
super().step(closure=closure) | |
return FullModelGradientClippingOptimizer if enable else optim | |
optimizer_type = cfg.SOLVER.OPTIMIZER | |
if optimizer_type == "SGD": | |
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( | |
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM | |
) | |
elif optimizer_type == "ADAMW": | |
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( | |
params, cfg.SOLVER.BASE_LR | |
) | |
elif optimizer_type == "ADAM": | |
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.Adam)( | |
params, cfg.SOLVER.BASE_LR | |
) | |
else: | |
raise NotImplementedError(f"no optimizer type {optimizer_type}") | |
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": | |
optimizer = maybe_add_gradient_clipping(cfg, optimizer) | |
return optimizer | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
# for poly lr schedule | |
add_deeplab_config(cfg) | |
add_kmax_deeplab_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="kmax_deeplab") | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
torch.backends.cudnn.enabled = True | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
if comm.is_main_process(): | |
verify_results(cfg, res) | |
return res | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
return trainer.train() | |
if __name__ == "__main__": | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |