# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/data/datasets/register_coco_panoptic_annos_semseg.py import json import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets import load_sem_seg from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES from detectron2.utils.file_io import PathManager _PREDEFINED_SPLITS_COCO_PANOPTIC = { "coco_2017_train_panoptic": ( # This is the original panoptic annotation directory "coco/panoptic_train2017", "coco/annotations/panoptic_train2017.json", # This directory contains semantic annotations that are # converted from panoptic annotations. # It is used by PanopticFPN. # You can use the script at detectron2/datasets/prepare_panoptic_fpn.py # to create these directories. "coco/panoptic_semseg_train2017", ), "coco_2017_val_panoptic": ( "coco/panoptic_val2017", "coco/annotations/panoptic_val2017.json", "coco/panoptic_semseg_val2017", ), } def get_metadata(): meta = {} # The following metadata maps contiguous id from [0, #thing categories + # #stuff categories) to their names and colors. We have to replica of the # same name and color under "thing_*" and "stuff_*" because the current # visualization function in D2 handles thing and class classes differently # due to some heuristic used in Panoptic FPN. We keep the same naming to # enable reusing existing visualization functions. thing_classes = [k["name"] for k in COCO_CATEGORIES if k["isthing"] == 1] thing_colors = [k["color"] for k in COCO_CATEGORIES if k["isthing"] == 1] stuff_classes = [k["name"] for k in COCO_CATEGORIES] stuff_colors = [k["color"] for k in COCO_CATEGORIES] meta["thing_classes"] = thing_classes meta["thing_colors"] = thing_colors meta["stuff_classes"] = stuff_classes meta["stuff_colors"] = stuff_colors # Convert category id for training: # category id: like semantic segmentation, it is the class id for each # pixel. Since there are some classes not used in evaluation, the category # id is not always contiguous and thus we have two set of category ids: # - original category id: category id in the original dataset, mainly # used for evaluation. # - contiguous category id: [0, #classes), in order to train the linear # softmax classifier. thing_dataset_id_to_contiguous_id = {} stuff_dataset_id_to_contiguous_id = {} for i, cat in enumerate(COCO_CATEGORIES): if cat["isthing"]: thing_dataset_id_to_contiguous_id[cat["id"]] = i # else: # stuff_dataset_id_to_contiguous_id[cat["id"]] = i # in order to use sem_seg evaluator stuff_dataset_id_to_contiguous_id[cat["id"]] = i meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id return meta def load_coco_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta): """ Args: image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets `_ ) """ def _convert_category_id(segment_info, meta): if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = True else: segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ segment_info["category_id"] ] segment_info["isthing"] = False return segment_info with PathManager.open(json_file) as f: json_info = json.load(f) ret = [] for ann in json_info["annotations"]: image_id = int(ann["image_id"]) # TODO: currently we assume image and label has the same filename but # different extension, and images have extension ".jpg" for COCO. Need # to make image extension a user-provided argument if we extend this # function to support other COCO-like datasets. image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") label_file = os.path.join(gt_dir, ann["file_name"]) sem_label_file = os.path.join(semseg_dir, ann["file_name"]) segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] ret.append( { "file_name": image_file, "image_id": image_id, "pan_seg_file_name": label_file, "sem_seg_file_name": sem_label_file, "segments_info": segments_info, } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"] return ret def register_coco_panoptic_annos_sem_seg( name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json ): panoptic_name = name delattr(MetadataCatalog.get(panoptic_name), "thing_classes") delattr(MetadataCatalog.get(panoptic_name), "thing_colors") MetadataCatalog.get(panoptic_name).set( thing_classes=metadata["thing_classes"], thing_colors=metadata["thing_colors"], # thing_dataset_id_to_contiguous_id=metadata["thing_dataset_id_to_contiguous_id"], ) # the name is "coco_2017_train_panoptic_with_sem_seg" and "coco_2017_val_panoptic_with_sem_seg" semantic_name = name + "_with_sem_seg" DatasetCatalog.register( semantic_name, lambda: load_coco_panoptic_json(panoptic_json, image_root, panoptic_root, sem_seg_root, metadata), ) MetadataCatalog.get(semantic_name).set( sem_seg_root=sem_seg_root, panoptic_root=panoptic_root, image_root=image_root, panoptic_json=panoptic_json, json_file=instances_json, evaluator_type="coco_panoptic_seg", ignore_label=255, label_divisor=1000, **metadata, ) def register_all_coco_panoptic_annos_sem_seg(root): for ( prefix, (panoptic_root, panoptic_json, semantic_root), ) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items(): prefix_instances = prefix[: -len("_panoptic")] instances_meta = MetadataCatalog.get(prefix_instances) image_root, instances_json = instances_meta.image_root, instances_meta.json_file register_coco_panoptic_annos_sem_seg( prefix, get_metadata(), image_root, os.path.join(root, panoptic_root), os.path.join(root, panoptic_json), os.path.join(root, semantic_root), instances_json, ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_coco_panoptic_annos_sem_seg(_root)