Spaces:
Runtime error
Runtime error
File size: 4,704 Bytes
0230643 c4bec8e 0230643 c4e4261 0230643 c4e4261 0230643 c4e4261 0230643 c4e4261 0230643 c4e4261 0230643 c4e4261 9e4e74d 0230643 c4e4261 0230643 c4e4261 0230643 c4e4261 a5a946f c4e4261 0230643 c4e4261 0230643 c4e4261 0230643 c4e4261 0230643 c4e4261 0230643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
from PIL import Image, ImageDraw, ImageFont
from textwrap import wrap
import requests
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.backends.backend_agg import FigureCanvasAgg
from io import BytesIO
import configparser
import tweepy
config = configparser.ConfigParser()
config.read('./config.ini')
api_key = config['twitter']['api_key']
api_key_secret = config['twitter']['api_key_secret']
access_token = config['twitter']['access_token']
access_token_secret = config['twitter']['access_token_secret']
# Authenticate with Twitter
auth = tweepy.OAuthHandler(api_key, api_key_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
tweets = []
def drawTweet(tweet,i):
width, height = 1000, 200
image = Image.new('RGBA', (width, height), 'white')
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('SofiaSansCondensed-VariableFont_wght.ttf', size=36, encoding='utf-16')
user = tweet.user
user_tag = user.screen_name
tweet_text = tweet.full_text
words = tweet_text.split()
formatted_string = ''
for i, word in enumerate(words):
formatted_string += word+' '
if (i + 1) % 7 == 0:
formatted_string += '\n'
draw.multiline_text( (135,50), formatted_string , fill='black' , font=font, embedded_color=True)
draw.text((135,10), f"@{user_tag}", fill='black',font=font)
response = requests.get(user.profile_image_url_https)
content = response.content
f = BytesIO(content)
avatar_size = (100, 100)
avatar_image = Image.open(f)
avatar_image = avatar_image.resize(avatar_size)
image.paste(avatar_image, (10, 10))
return image
def collect_tweets(topic):
limit=200
tweets = tweepy.Cursor(api.search_tweets,q=f"{topic} -filter:retweets", lang="en", tweet_mode='extended', result_type = 'recent').items(limit)
tweets = [tweet for tweet in tweets]
images = []
i = 1
for tweet in tweets:
img = drawTweet(tweet,i)
images.append(img)
sentiment_plot = sentiment_analysis(tweets,topic)
return images,sentiment_plot
def sentiment_analysis(tweets,topic):
tweet_procs = []
for tweet in tweets:
tweet_words = []
for word in tweet.full_text.split(' '):
if word.startswith('@') and len(word) > 1:
word = '@user'
elif word.startswith('https'):
word = "http"
tweet_words.append(word)
tweet_proc = " ".join(tweet_words)
tweet_procs.append(tweet_proc)
API_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
headers = {"Authorization": "Bearer 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"}
print(len(tweet_procs))
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
model_input = {
"inputs": [tweet_procs[0]]
}
for i in range(1,len(tweets)):
model_input["inputs"].append(tweet_procs[i])
output = query({
"inputs": model_input["inputs"]})
negative = 0
neutral = 0
positive = 0
for score in output:
neg = 0
neu = 0
pos = 0
for labels in score:
if labels['label'] == 'LABEL_0':
neg += labels['score']
elif labels['label'] == 'LABEL_1':
neu += labels['score']
elif labels['label'] == 'LABEL_2':
pos += labels['score']
sentiment = max(neg,neu,pos)
if neg == sentiment:
negative += 1
elif neu == sentiment:
neutral += 1
elif pos == sentiment:
positive += 1
sns.barplot(x=["Negative Sentiment", "Neutral Sentiment", "Positive Sentiment"], y = [negative,neutral,positive])
plt.title(f"Sentiment Analysis on Twitter regarding {topic}")
canvas = FigureCanvasAgg(plt.gcf())
canvas.draw()
plot = np.array(canvas.buffer_rgba())
return plot
app = gr.Interface(fn=collect_tweets, inputs=gr.Textbox(label="Enter a topic for tweets"), outputs=[gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="50"), gr.Image(label="Sentiment Analysis Result")])
app.launch()
|