furquan's picture
Update app.py
205b3c1
raw
history blame
4.9 kB
from PIL import Image, ImageDraw, ImageFont
from textwrap import wrap
import requests
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.backends.backend_agg import FigureCanvasAgg
from io import BytesIO
import configparser
import tweepy
config = configparser.ConfigParser()
config.read('./config.ini')
api_key = config['twitter']['api_key']
api_key_secret = config['twitter']['api_key_secret']
access_token = config['twitter']['access_token']
access_token_secret = config['twitter']['access_token_secret']
# Authenticate with Twitter
auth = tweepy.OAuthHandler(api_key, api_key_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
tweets = []
def drawTweet(tweet,i):
width, height = 1000, 200
image = Image.new('RGBA', (width, height), 'white')
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('SofiaSansCondensed-VariableFont_wght.ttf', size=36, encoding='utf-16')
user = tweet.user
user_tag = user.screen_name
tweet_text = tweet.full_text
words = tweet_text.split()
formatted_string = ''
for i, word in enumerate(words):
formatted_string += word+' '
if (i + 1) % 7 == 0:
formatted_string += '\n'
draw.multiline_text( (135,50), formatted_string , fill='black' , font=font, embedded_color=True)
draw.text((135,10), f"@{user_tag}", fill='black',font=font)
response = requests.get(user.profile_image_url_https)
content = response.content
f = BytesIO(content)
avatar_size = (100, 100)
avatar_image = Image.open(f)
avatar_image = avatar_image.resize(avatar_size)
image.paste(avatar_image, (10, 10))
return image
def collect_tweets(topic):
limit=200
tweets = tweepy.Cursor(api.search_tweets,q=f"{topic} -filter:retweets", lang="en", tweet_mode='extended', result_type = 'recent').items(limit)
tweets = [tweet for tweet in tweets]
images = []
i = 1
for tweet in tweets:
img = drawTweet(tweet,i)
images.append(img)
sentiment_plot = sentiment_analysis(tweets,topic)
return images,sentiment_plot
def sentiment_analysis(tweets,topic):
tweet_procs = []
for tweet in tweets:
tweet_words = []
for word in tweet.full_text.split(' '):
if word.startswith('@') and len(word) > 1:
word = '@user'
elif word.startswith('https'):
word = "http"
tweet_words.append(word)
tweet_proc = " ".join(tweet_words)
tweet_procs.append(tweet_proc)
API_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
headers = {"Authorization": "Bearer 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"}
print(len(tweet_procs))
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
model_input = {
"inputs": [tweet_procs[0]]
}
for i in range(1,len(tweets)):
model_input["inputs"].append(tweet_procs[i])
output = query({
"inputs": model_input["inputs"]})
negative = 0
neutral = 0
positive = 0
for score in output:
neg = 0
neu = 0
pos = 0
for labels in score:
if labels['label'] == 'LABEL_0':
neg += labels['score']
elif labels['label'] == 'LABEL_1':
neu += labels['score']
elif labels['label'] == 'LABEL_2':
pos += labels['score']
sentiment = max(neg,neu,pos)
if neg == sentiment:
negative += 1
elif neu == sentiment:
neutral += 1
elif pos == sentiment:
positive += 1
sns.barplot(x=["Negative Sentiment", "Neutral Sentiment", "Positive Sentiment"], y = [negative,neutral,positive])
plt.title(f"Sentiment Analysis on Twitter regarding {topic}")
canvas = FigureCanvasAgg(plt.gcf())
canvas.draw()
plot = np.array(canvas.buffer_rgba())
return plot
with gr.Blocks() as app:
with gr.Row(equal_height=True):
topic = gr.Textbox(label="Enter a topic for tweets")
output2 = gr.Image(label="Sentiment Analysis Result")
output1 = gr.Gallery(label="Screenshot of Tweets", show_label=True, elem_id="gallery").style(grid=[3], height="auto")
greet_btn = gr.Button("Initiate Sentiment Analysis")
greet_btn.click(collect_tweets, inputs=topic, outputs=[output1, output2])
app.launch()