Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,9 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
import gradio as gr
|
4 |
-
from
|
5 |
|
6 |
-
|
7 |
-
starchat_repo = os.getenv('HF_MODEL_STARCHAT_REPO')
|
8 |
-
bloom_repo = os.getenv('HF_MODEL_BLOOM_REPO')
|
9 |
-
|
10 |
-
llamma_template = """<s>[INST]<<SYS>>I want you to act as document language translator. You do translation {source} texts in document into then you return to me the translated document AND DO NOTHING ELSE.<</SYS>>[/INST]
|
11 |
-
[INST]Begin of the document:
|
12 |
-
{query}
|
13 |
-
End of the document.[/INST]
|
14 |
-
{target} translated document:
|
15 |
-
"""
|
16 |
-
|
17 |
-
starchat_template = """<|system|>I want you to act as document language translator. You do translation {source} texts in document into then you return to me the translated document AND DO NOTHING ELSE.<</SYS>>
|
18 |
-
Begin of the document:
|
19 |
-
{query}
|
20 |
-
End of the document<|end|>
|
21 |
-
<|assistant|>
|
22 |
-
{target} translated document:
|
23 |
-
"""
|
24 |
|
25 |
bloom_template = """Text translation.
|
26 |
{source} text:
|
@@ -28,25 +11,17 @@ bloom_template = """Text translation.
|
|
28 |
{target} translated text:
|
29 |
<s>"""
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
"max_new_tokens":1000,
|
41 |
-
"temperature": 0.01,
|
42 |
-
# "truncate": 1512,
|
43 |
-
"seed" : 42,
|
44 |
-
"stop" : ["</s>","<|endoftext|>","<|end|>"],
|
45 |
-
}
|
46 |
|
47 |
-
|
48 |
-
llm2 = HuggingFaceHub(repo_id=starchat_repo, task="text-generation", model_kwargs=model_kwargs)
|
49 |
-
llm3 = HuggingFaceHub(repo_id=bloom_repo, task="text-generation", model_kwargs=bloom_model_kwargs)
|
50 |
|
51 |
def split_text_into_chunks(text, chunk_size=1000):
|
52 |
lines = text.split('\n')
|
@@ -65,21 +40,28 @@ def split_text_into_chunks(text, chunk_size=1000):
|
|
65 |
return chunks
|
66 |
|
67 |
def translation(source, target, text):
|
68 |
-
|
|
|
69 |
chunks = split_text_into_chunks(text)
|
70 |
for chunk in chunks:
|
71 |
try:
|
72 |
input_prompt = bloom_template.replace("{source}", source)
|
73 |
input_prompt = input_prompt.replace("{target}", target)
|
74 |
input_prompt = input_prompt.replace("{query}", chunk)
|
75 |
-
|
76 |
-
for
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
79 |
except Exception as e:
|
80 |
print(f"ERROR: LLM show {e}")
|
81 |
-
time.sleep(
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
gr.Interface(translation, inputs=["text","text","text"], outputs="text").launch()
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import gradio as gr
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
|
6 |
+
bloom_repo = "bigscience/bloom"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
bloom_template = """Text translation.
|
9 |
{source} text:
|
|
|
11 |
{target} translated text:
|
12 |
<s>"""
|
13 |
|
14 |
+
bloom_model_kwargs=dict(
|
15 |
+
max_new_tokens=1000,
|
16 |
+
temperature=0.3,
|
17 |
+
# truncate=1512,
|
18 |
+
seed=42,
|
19 |
+
stop_sequences=["</s>","<|endoftext|>","<|end|>"],
|
20 |
+
top_p=0.95,
|
21 |
+
repetition_penalty=1.1,
|
22 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
client = InferenceClient(model=bloom_repo, token=os.environ.get("HUGGINGFACEHUB_API_TOKEN", None))
|
|
|
|
|
25 |
|
26 |
def split_text_into_chunks(text, chunk_size=1000):
|
27 |
lines = text.split('\n')
|
|
|
40 |
return chunks
|
41 |
|
42 |
def translation(source, target, text):
|
43 |
+
output = ""
|
44 |
+
result = ""
|
45 |
chunks = split_text_into_chunks(text)
|
46 |
for chunk in chunks:
|
47 |
try:
|
48 |
input_prompt = bloom_template.replace("{source}", source)
|
49 |
input_prompt = input_prompt.replace("{target}", target)
|
50 |
input_prompt = input_prompt.replace("{query}", chunk)
|
51 |
+
stream = client.text_generation(input_prompt, stream=True, details=True, return_full_text=False, **bloom_model_kwargs)
|
52 |
+
for response in stream:
|
53 |
+
output += response.token.text
|
54 |
+
for stop_str in bloom_model_kwargs['stop_sequences']:
|
55 |
+
if output.endswith(stop_str):
|
56 |
+
output = output[:-len(stop_str)]
|
57 |
+
yield output.replace("<newline>","\n")
|
58 |
+
#yield output.replace("<newline>","\n")
|
59 |
+
result += output
|
60 |
except Exception as e:
|
61 |
print(f"ERROR: LLM show {e}")
|
62 |
+
time.sleep(1)
|
63 |
+
#yield result.replace("<newline>","\n").strip()
|
64 |
+
if result == "": result = text
|
65 |
+
return result.replace("<newline>","\n").strip()
|
66 |
|
67 |
+
gr.Interface(translation, inputs=["text","text","text"], outputs="text").queue(concurrency_count=100).launch()
|