Spaces:
Running
Running
Removed duplicate space
Browse files
app.py
CHANGED
@@ -4,39 +4,44 @@ docs = None
|
|
4 |
|
5 |
|
6 |
def request_pathname(files):
|
|
|
|
|
7 |
return [[file.name, file.name.split('/')[-1]] for file in files]
|
8 |
|
9 |
|
10 |
def validate_dataset(dataset, openapi):
|
|
|
|
|
|
|
11 |
docs_ready = dataset.iloc[-1, 0] != ""
|
12 |
if docs_ready and type(openapi) is str and len(openapi) > 0:
|
13 |
return "✨Ready✨"
|
14 |
elif docs_ready:
|
15 |
-
return "Waiting for key..."
|
16 |
elif type(openapi) is str and len(openapi) > 0:
|
17 |
-
return "Waiting for documents..."
|
18 |
else:
|
19 |
-
return "Waiting for documents and key..."
|
20 |
|
21 |
|
22 |
def do_ask(question, button, openapi, dataset, progress=gr.Progress()):
|
23 |
global docs
|
24 |
docs_ready = dataset.iloc[-1, 0] != ""
|
25 |
-
if button == "✨Ready✨" and openapi
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
key =
|
35 |
-
|
|
|
|
|
36 |
else:
|
37 |
return ""
|
38 |
-
if docs is None:
|
39 |
-
return """**Error**: You must build the index first!"""
|
40 |
progress(0, "Building Index...")
|
41 |
docs._build_faiss_index()
|
42 |
progress(0.25, "Querying...")
|
@@ -59,13 +64,13 @@ with gr.Blocks() as demo:
|
|
59 |
|
60 |
## Instructions
|
61 |
|
62 |
-
1. Enter API Key
|
63 |
2. Upload your documents and modify citation strings if you want (to look prettier)
|
64 |
""")
|
65 |
openai_api_key = gr.Textbox(
|
66 |
label="OpenAI API Key", placeholder="sk-...", type="password")
|
67 |
uploaded_files = gr.File(
|
68 |
-
label="Your Documents Upload (PDF or txt)", file_count="multiple")
|
69 |
dataset = gr.Dataframe(
|
70 |
headers=["filepath", "citation string"],
|
71 |
datatype=["str", "str"],
|
@@ -73,7 +78,7 @@ with gr.Blocks() as demo:
|
|
73 |
interactive=True,
|
74 |
label="Documents and Citations"
|
75 |
)
|
76 |
-
buildb = gr.Textbox("Waiting for documents and key...",
|
77 |
label="Status", interactive=False, show_label=True)
|
78 |
openai_api_key.change(validate_dataset, inputs=[
|
79 |
dataset, openai_api_key], outputs=[buildb])
|
@@ -93,5 +98,5 @@ with gr.Blocks() as demo:
|
|
93 |
ask.click(fn=do_ask, inputs=[query, buildb,
|
94 |
openai_api_key, dataset], outputs=[answer, context])
|
95 |
|
96 |
-
demo.queue(concurrency_count=
|
97 |
-
demo.launch()
|
|
|
4 |
|
5 |
|
6 |
def request_pathname(files):
|
7 |
+
if files is None:
|
8 |
+
return [[]]
|
9 |
return [[file.name, file.name.split('/')[-1]] for file in files]
|
10 |
|
11 |
|
12 |
def validate_dataset(dataset, openapi):
|
13 |
+
global docs
|
14 |
+
print('clearing docs')
|
15 |
+
docs = None # clear it out if dataset is modified
|
16 |
docs_ready = dataset.iloc[-1, 0] != ""
|
17 |
if docs_ready and type(openapi) is str and len(openapi) > 0:
|
18 |
return "✨Ready✨"
|
19 |
elif docs_ready:
|
20 |
+
return "⚠️Waiting for key..."
|
21 |
elif type(openapi) is str and len(openapi) > 0:
|
22 |
+
return "⚠️Waiting for documents..."
|
23 |
else:
|
24 |
+
return "⚠️Waiting for documents and key..."
|
25 |
|
26 |
|
27 |
def do_ask(question, button, openapi, dataset, progress=gr.Progress()):
|
28 |
global docs
|
29 |
docs_ready = dataset.iloc[-1, 0] != ""
|
30 |
+
if button == "✨Ready✨" and type(openapi) is str and len(openapi) > 0 and docs_ready:
|
31 |
+
print('are docs ready?', docs)
|
32 |
+
if docs is None: # don't want to rebuild index if it's already built
|
33 |
+
import os
|
34 |
+
os.environ['OPENAI_API_KEY'] = openapi.strip()
|
35 |
+
import paperqa
|
36 |
+
docs = paperqa.Docs()
|
37 |
+
# dataset is pandas dataframe
|
38 |
+
for _, row in dataset.iterrows():
|
39 |
+
key = None
|
40 |
+
if ',' not in row['citation string']:
|
41 |
+
key = row['citation string']
|
42 |
+
docs.add(row['filepath'], row['citation string'], key=key)
|
43 |
else:
|
44 |
return ""
|
|
|
|
|
45 |
progress(0, "Building Index...")
|
46 |
docs._build_faiss_index()
|
47 |
progress(0.25, "Querying...")
|
|
|
64 |
|
65 |
## Instructions
|
66 |
|
67 |
+
1. Enter API Key ([What is that?](https://openai.com/api/))
|
68 |
2. Upload your documents and modify citation strings if you want (to look prettier)
|
69 |
""")
|
70 |
openai_api_key = gr.Textbox(
|
71 |
label="OpenAI API Key", placeholder="sk-...", type="password")
|
72 |
uploaded_files = gr.File(
|
73 |
+
label="Your Documents Upload (PDF or txt)", file_count="multiple", )
|
74 |
dataset = gr.Dataframe(
|
75 |
headers=["filepath", "citation string"],
|
76 |
datatype=["str", "str"],
|
|
|
78 |
interactive=True,
|
79 |
label="Documents and Citations"
|
80 |
)
|
81 |
+
buildb = gr.Textbox("⚠️Waiting for documents and key...",
|
82 |
label="Status", interactive=False, show_label=True)
|
83 |
openai_api_key.change(validate_dataset, inputs=[
|
84 |
dataset, openai_api_key], outputs=[buildb])
|
|
|
98 |
ask.click(fn=do_ask, inputs=[query, buildb,
|
99 |
openai_api_key, dataset], outputs=[answer, context])
|
100 |
|
101 |
+
demo.queue(concurrency_count=20)
|
102 |
+
demo.launch(show_error=True)
|
space.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
docs = None
|
4 |
-
|
5 |
-
|
6 |
-
def request_pathname(files):
|
7 |
-
if files is None:
|
8 |
-
return [[]]
|
9 |
-
return [[file.name, file.name.split('/')[-1]] for file in files]
|
10 |
-
|
11 |
-
|
12 |
-
def validate_dataset(dataset, openapi):
|
13 |
-
global docs
|
14 |
-
print('clearing docs')
|
15 |
-
docs = None # clear it out if dataset is modified
|
16 |
-
docs_ready = dataset.iloc[-1, 0] != ""
|
17 |
-
if docs_ready and type(openapi) is str and len(openapi) > 0:
|
18 |
-
return "✨Ready✨"
|
19 |
-
elif docs_ready:
|
20 |
-
return "⚠️Waiting for key..."
|
21 |
-
elif type(openapi) is str and len(openapi) > 0:
|
22 |
-
return "⚠️Waiting for documents..."
|
23 |
-
else:
|
24 |
-
return "⚠️Waiting for documents and key..."
|
25 |
-
|
26 |
-
|
27 |
-
def do_ask(question, button, openapi, dataset, progress=gr.Progress()):
|
28 |
-
global docs
|
29 |
-
docs_ready = dataset.iloc[-1, 0] != ""
|
30 |
-
if button == "✨Ready✨" and type(openapi) is str and len(openapi) > 0 and docs_ready:
|
31 |
-
print('are docs ready?', docs)
|
32 |
-
if docs is None: # don't want to rebuild index if it's already built
|
33 |
-
import os
|
34 |
-
os.environ['OPENAI_API_KEY'] = openapi.strip()
|
35 |
-
import paperqa
|
36 |
-
docs = paperqa.Docs()
|
37 |
-
# dataset is pandas dataframe
|
38 |
-
for _, row in dataset.iterrows():
|
39 |
-
key = None
|
40 |
-
if ',' not in row['citation string']:
|
41 |
-
key = row['citation string']
|
42 |
-
docs.add(row['filepath'], row['citation string'], key=key)
|
43 |
-
else:
|
44 |
-
return ""
|
45 |
-
progress(0, "Building Index...")
|
46 |
-
docs._build_faiss_index()
|
47 |
-
progress(0.25, "Querying...")
|
48 |
-
result = docs.query(question)
|
49 |
-
progress(1.0, "Done!")
|
50 |
-
return result.formatted_answer, result.context
|
51 |
-
|
52 |
-
|
53 |
-
with gr.Blocks() as demo:
|
54 |
-
gr.Markdown("""
|
55 |
-
# Document Question and Answer
|
56 |
-
|
57 |
-
This tool will enable asking questions of your uploaded text or PDF documents.
|
58 |
-
It uses OpenAI's GPT models and thus you must enter your API key below. This
|
59 |
-
tool is under active development and currently uses many tokens - up to 10,000
|
60 |
-
for a single query. That is $0.10-0.20 per query, so please be careful!
|
61 |
-
|
62 |
-
* [PaperQA](https://github.com/whitead/paper-qa) is the code used to build this tool.
|
63 |
-
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
|
64 |
-
|
65 |
-
## Instructions
|
66 |
-
|
67 |
-
1. Enter API Key ([What is that?](https://openai.com/api/))
|
68 |
-
2. Upload your documents and modify citation strings if you want (to look prettier)
|
69 |
-
""")
|
70 |
-
openai_api_key = gr.Textbox(
|
71 |
-
label="OpenAI API Key", placeholder="sk-...", type="password")
|
72 |
-
uploaded_files = gr.File(
|
73 |
-
label="Your Documents Upload (PDF or txt)", file_count="multiple", )
|
74 |
-
dataset = gr.Dataframe(
|
75 |
-
headers=["filepath", "citation string"],
|
76 |
-
datatype=["str", "str"],
|
77 |
-
col_count=(2, "fixed"),
|
78 |
-
interactive=True,
|
79 |
-
label="Documents and Citations"
|
80 |
-
)
|
81 |
-
buildb = gr.Textbox("⚠️Waiting for documents and key...",
|
82 |
-
label="Status", interactive=False, show_label=True)
|
83 |
-
openai_api_key.change(validate_dataset, inputs=[
|
84 |
-
dataset, openai_api_key], outputs=[buildb])
|
85 |
-
dataset.change(validate_dataset, inputs=[
|
86 |
-
dataset, openai_api_key], outputs=[buildb])
|
87 |
-
uploaded_files.change(request_pathname, inputs=[
|
88 |
-
uploaded_files], outputs=[dataset])
|
89 |
-
query = gr.Textbox(
|
90 |
-
placeholder="Enter your question here...", label="Question")
|
91 |
-
ask = gr.Button("Ask Question")
|
92 |
-
gr.Markdown("## Answer")
|
93 |
-
answer = gr.Markdown(label="Answer")
|
94 |
-
with gr.Accordion("Context", open=False):
|
95 |
-
gr.Markdown(
|
96 |
-
"### Context\n\nThe following context was used to generate the answer:")
|
97 |
-
context = gr.Markdown(label="Context")
|
98 |
-
ask.click(fn=do_ask, inputs=[query, buildb,
|
99 |
-
openai_api_key, dataset], outputs=[answer, context])
|
100 |
-
|
101 |
-
demo.queue(concurrency_count=20)
|
102 |
-
demo.launch(show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|