Spaces:
Runtime error
Runtime error
File size: 26,332 Bytes
8d6b878 7bcfef6 8d6b878 7bcfef6 8d6b878 7bcfef6 8d6b878 7bcfef6 8d6b878 7bcfef6 8d6b878 7bcfef6 8d6b878 7bcfef6 8d6b878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import gradio as gr
from time import time
import torch
import os
# import nltk
import argparse
import random
import numpy as np
import faiss
from argparse import Namespace
from tqdm.notebook import tqdm
from torch.utils.data import DataLoader
from functools import partial
from sklearn.manifold import TSNE
from transformers import AutoTokenizer, MarianTokenizer, AutoModel, AutoModelForSeq2SeqLM, MarianMTModel
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
print(dir_path)
metadata_all = {}
model_es = "Helsinki-NLP/opus-mt-en-es"
model_fr = "Helsinki-NLP/opus-mt-en-fr"
model_zh = "Helsinki-NLP/opus-mt-en-zh"
model_ar = "Helsinki-NLP/opus-mt-en-ar"
tokenizer_es = AutoTokenizer.from_pretrained(model_es)
tokenizer_fr = AutoTokenizer.from_pretrained(model_fr)
tokenizer_zh = AutoTokenizer.from_pretrained(model_zh)
tokenizer_ar = AutoTokenizer.from_pretrained(model_ar)
model_tr_es = MarianMTModel.from_pretrained(model_es)
model_tr_fr = MarianMTModel.from_pretrained(model_fr)
model_tr_zh = MarianMTModel.from_pretrained(model_zh)
model_tr_ar = MarianMTModel.from_pretrained(model_ar)
dict_models = {
'en-es': model_es,
'en-fr': model_fr,
'en-zh': model_zh,
'en-ar': model_ar,
}
dict_models_tr = {
'en-es': model_tr_es,
'en-fr': model_tr_fr,
'en-zh': model_tr_zh,
'en-ar': model_tr_ar,
}
dict_tokenizer_tr = {
'en-es': tokenizer_es,
'en-fr': tokenizer_fr,
'en-zh': tokenizer_zh,
'en-ar': tokenizer_ar,
}
from faiss import write_index, read_index
import pickle
def translation_model(w1,model ):
inputs = dict_tokenizer_tr[model](w1, return_tensors="pt")
# embeddings = get_tokens_embeddings(inputs, model)
input_embeddings = dict_models_tr[model].get_encoder().embed_tokens(inputs.input_ids)
# model_tr_es.get_input_embeddings()
print(inputs)
num_ret_seq = 1
translated = dict_models_tr[model].generate(**inputs,
num_beams=5,
num_return_sequences=num_ret_seq,
return_dict_in_generate=True,
output_attentions =False,
output_hidden_states = True,
output_scores=True,)
tgt_text = dict_tokenizer_tr[model].decode(translated.sequences[0], skip_special_tokens=True)
target_embeddings = dict_models_tr[model].get_decoder().embed_tokens(translated.sequences)
return tgt_text, translated, inputs.input_ids, input_embeddings, target_embeddings
def create_vocab_multiple(embeddings_list, model):
"""_summary_
Args:
embeddings_list (list): embedding array
Returns:
Dict: vocabulary of tokens' embeddings
"""
print("START VOCAB CREATION MULTIPLE \n \n ")
vocab = {} ## add embedds.
sentence_tokens_text_list = []
for embeddings in embeddings_list:
tokens_id = embeddings['tokens'] # [[tokens_id]x n_sentences ]
for sent_i, sentence in enumerate(tokens_id):
sentence_tokens = []
for tok_i, token in enumerate(sentence):
sentence_tokens.append(token)
if not (token in vocab):
vocab[token] = {
'token' : token,
'count': 1,
# 'text': embeddings['texts'][sent_i][tok_i],
'text': dict_tokenizer_tr[model].decode([token]),
# 'text': src_token_lists[sent_i][tok_i],
'embed': embeddings['embeddings'][sent_i][tok_i]}
else:
vocab[token]['count'] = vocab[token]['count'] + 1
# print(vocab)
sentence_tokens_text_list.append(sentence_tokens)
print("END VOCAB CREATION MULTIPLE \n \n ")
return vocab, sentence_tokens_text_list
def vocab_words_all_prefix(token_embeddings, model, sufix="@@",prefix = '▁' ):
vocab = {}
# inf_model = dict_models_tr[model]
sentence_words_text_list = []
if prefix :
n_prefix = len(prefix)
for input_sentences in token_embeddings:
# n_tokens_in_word
for sent_i, sentence in enumerate(input_sentences['tokens']):
words_text_list = []
# embedding = input_sentences['embed'][sent_i]
word = ''
tokens_ids = []
embeddings = []
ids_to_tokens = dict_tokenizer_tr[model].convert_ids_to_tokens(sentence)
# print("validate same len", len(sentence) == len(ids_to_tokens), len(sentence), len(ids_to_tokens), ids_to_tokens)
to_save= False
for tok_i, token_text in enumerate(ids_to_tokens):
token_id = sentence[tok_i]
if token_text[:n_prefix] == prefix :
#first we save the previous word
if to_save:
vocab[word] = {
'word' : word,
'text': word,
'count': 1,
'tokens_ids' : tokens_ids,
'embed': np.mean(np.array(embeddings), 0).tolist()
}
words_text_list.append(word)
#word is starting if prefix
tokens_ids = [token_id]
embeddings = [input_sentences['embeddings'][sent_i][tok_i]]
word = token_text[n_prefix:]
## if word
to_save = True
else :
if (token_text in dict_tokenizer_tr[model].special_tokens_map.values()):
# print('final or save', token_text, token_id, to_save, word)
if to_save:
# vocab[word] = ids
vocab[word] = {
'word' : word,
'text': word,
'count': 1,
'tokens_ids' : tokens_ids,
'embed': np.mean(np.array(embeddings), 0).tolist()
}
words_text_list.append(word)
#special token is one token element, no continuation
# vocab[token_text] = [token_id]
tokens_ids = [token_id]
embeddings = [input_sentences['embeddings'][sent_i][tok_i]]
vocab[token_text] = {
'word' : token_text,
'count': 1,
'text': word,
'tokens_ids' : tokens_ids,
'embed': np.mean(np.array(embeddings), 0).tolist()
}
words_text_list.append(token_text)
to_save = False
else:
# is a continuation; we do not know if it is final; we don't save here.
to_save = True
word += token_text
tokens_ids.append(token_id)
embeddings.append(input_sentences['embeddings'][sent_i][tok_i])
if to_save:
# print('final save', token_text, token_id, to_save, word)
vocab[word] = tokens_ids
if not (word in vocab):
vocab[word] = {
'word' : word,
'count': 1,
'text': word,
'tokens_ids' : tokens_ids,
'embed': np.mean(np.array(embeddings), 0).tolist()
}
words_text_list.append(word)
else:
vocab[word]['count'] = vocab[word]['count'] + 1
sentence_words_text_list.append(words_text_list)
return vocab, sentence_words_text_list
# nb_ids.append(token_values['token']) # for x in vocab_tokens]
# nb_embds.append(token_values['embed']) # for x in vocab_tokens]
def create_index_voronoi(vocab):
"""
it returns an index of words and a metadata of ids.
"""
d = 1024
nb_embds = [] ##ordered embeddings list
metadata = {}
i_pos = 0
for key_token, token_values in vocab.items():
nb_embds.append(token_values['embed']) # for x in vocab_tokens]
metadata[i_pos] = {'token': token_values['token'], 'text': token_values['text']}
i_pos += 1
# nb_embds = [x['embed'] for x in vocab_tokens]
# print(len(nb_embds),len(nb_embds[0]) )
xb = np.array(nb_embds).astype('float32') #elements to index
# ids = np.array(nb_ids)
d = len(xb[0]) # dimension of each element
nlist = 5 # Nb of Voronois
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFFlat(quantizer, d, nlist)
index.train(xb)
index.add(xb)
# index.add(xb)
return index, metadata## , nb_embds, nb_ids
def create_index_voronoi_words(vocab):
"""
it returns an index of words and a metadata of ids.
"""
d = 1024
nb_embds = [] ##ordered embeddings list
metadata = {}
i_pos = 0
for key_token, token_values in vocab.items():
nb_embds.append(token_values['embed']) # for x in vocab_tokens]
metadata[i_pos] = {'word': token_values['word'], 'tokens': token_values['tokens_ids'],'text': token_values['text']}
i_pos += 1
# nb_embds = [x['embed'] for x in vocab_tokens]
# print(len(nb_embds),len(nb_embds[0]) )
xb = np.array(nb_embds).astype('float32') #elements to index
# ids = np.array(nb_ids)
d = len(xb[0]) # dimension of each element
nlist = 5 # Nb of Voronois
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFFlat(quantizer, d, nlist)
index.train(xb)
index.add(xb)
# index.add(xb)
return index, metadata## , nb_embds, nb_ids
def search_query_vocab(index, vocab_queries, topk = 10, limited_search = []):
""" the embed queries are a vocabulary of words : embds_input_voc
Args:
index (_type_): faiss index
embed_queries (_type_): vocab format.
{ 'token' : token,
'count': 1,
'text': src_token_lists[sent_i][tok_i],
'embed': embeddings[0]['embeddings'][sent_i][tok_i] }
nb_ids (_type_): hash to find the token_id w.r.t the faiss index id.
topk (int, optional): nb of similar tokens. Defaults to 10.
Returns:
_type_: Distance matrix D, indices matrix I and tokens ids (using nb_ids)
"""
# nb_qi_ids = [] ##ordered ids list
nb_q_embds = [] ##ordered embeddings list
metadata = {}
qi_pos = 0
for key , token_values in vocab_queries.items():
# nb_qi_ids.append(token_values['token']) # for x in vocab_tokens]
metadata[qi_pos] = {'word': token_values['word'], 'tokens': token_values['tokens_ids'], 'text': token_values['text']}
qi_pos += 1
nb_q_embds.append(token_values['embed']) # for x in vocab_tokens]
xq = np.array(nb_q_embds).astype('float32') #elements to query
D,I = index.search(xq, topk)
return D,I, metadata
def search_query_vocab_token(index, vocab_queries, topk = 10, limited_search = []):
""" the embed queries are a vocabulary of words : embds_input_vov
Returns:
_type_: Distance matrix D, indices matrix I and tokens ids (using nb_ids)
"""
# nb_qi_ids = [] ##ordered ids list
nb_q_embds = [] ##ordered embeddings list
metadata = {}
qi_pos = 0
for key , token_values in vocab_queries.items():
# nb_qi_ids.append(token_values['token']) # for x in vocab_tokens]
metadata[qi_pos] = {'token': token_values['token'], 'text': token_values['text']}
qi_pos += 1
nb_q_embds.append(token_values['embed']) # for x in vocab_tokens]
xq = np.array(nb_q_embds).astype('float32') #elements to query
D,I = index.search(xq, topk)
return D,I, metadata
def build_search(query_embeddings, model,type="input"):
global metadata_all
# ## biuld vocab for index
vocab_queries, sentence_tokens_list = create_vocab_multiple(query_embeddings, model)
words_vocab_queries, sentence_words_list = vocab_words_all_prefix(query_embeddings, model, sufix="@@",prefix="▁")
index_vor_tokens = metadata_all[type]['tokens'][1]
md_tokens = metadata_all[type]['tokens'][2]
D, I, meta = search_query_vocab_token(index_vor_tokens, vocab_queries)
qi_pos = 0
similar_tokens = {}
# similar_tokens = []
for dist, ind in zip(D,I):
try:
# similar_tokens.append({
similar_tokens[str(meta[qi_pos]['token'])] = {
'token': meta[qi_pos]['token'],
'text': meta[qi_pos]['text'],
# 'text': dict_tokenizer_tr[model].decode(meta[qi_pos]['token'])
# 'text': meta[qi_pos]['text'],
"similar_topk": [md_tokens[i_index]['token'] for i_index in ind if (i_index != -1) ],
"distance": [dist[i] for (i, i_index) in enumerate(ind) if (i_index != -1)],
}
# )
except:
print("\n ERROR ", qi_pos, dist, ind)
qi_pos += 1
index_vor_words = metadata_all[type]['words'][1]
md_words = metadata_all[type]['words'][2]
Dw, Iw, metaw = search_query_vocab(index_vor_words, words_vocab_queries)
# D, I, meta, vocab_words, sentence_words_list = result_input['words']# [2] # D ; I ; meta
qi_pos = 0
# similar_words = []
similar_words = {}
for dist, ind in zip(Dw,Iw):
try:
# similar_words.append({
similar_words[str(metaw[qi_pos]['word']) ] = {
'word': metaw[qi_pos]['word'],
'text': metaw[qi_pos]['word'],
"similar_topk": [md_words[i_index]['word'] for i_index in ind if (i_index != -1) ],
"distance": [dist[i] for (i, i_index) in enumerate(ind) if (i_index != -1)],
}
# )
except:
print("\n ERROR ", qi_pos, dist, ind)
qi_pos += 1
return {'tokens': {'D': D, 'I': I, 'meta': meta, 'vocab_queries': vocab_queries, 'similar':similar_tokens, 'sentence_key_list': sentence_tokens_list},
'words': {'D':Dw,'I': Iw, 'meta': metaw, 'vocab_queries':words_vocab_queries, 'sentence_key_list': sentence_words_list, 'similar': similar_words}
}
def build_reference(all_embeddings, model):
# ## biuld vocab for index
vocab, sentence_tokens = create_vocab_multiple(all_embeddings,model)
words_vocab, sentences = vocab_words_all_prefix(all_embeddings, model, sufix="@@",prefix="▁")
index_tokens, meta_tokens = create_index_voronoi(vocab)
index_words, meta_words = create_index_voronoi_words(words_vocab)
return {'tokens': [vocab, index_tokens, meta_tokens],
'words': [words_vocab, index_words, meta_words]
} # , index, meta
def embds_input_projection_vocab(vocab, key="token"):
t0 = time()
nb_ids = [] ##ordered ids list
nb_embds = [] ##ordered embeddings list
nb_text = [] ##ordered embeddings list
tnse_error = []
for _ , token_values in vocab.items():
tnse_error.append([0,0])
nb_ids.append(token_values[key]) # for x in vocab_tokens]
nb_text.append(token_values['text']) # for x in vocab_tokens]
nb_embds.append(token_values['embed']) # for x in vocab_tokens]
X = np.array(nb_embds).astype('float32') #elements to project
try:
tsne = TSNE(random_state=0, n_iter=1000)
tsne_results = tsne.fit_transform(X)
tsne_results = np.c_[tsne_results, nb_ids, nb_text, range(len(nb_ids))] ## creates a zip array : [[TNSE[X,Y], tokenid, token_text], ...]
except:
tsne_results = np.c_[tnse_error, nb_ids, nb_text, range(len(nb_ids))] ## creates a zip array : [[TNSE[X,Y], tokenid, token_text], ...]
t1 = time()
print("t-SNE: %.2g sec" % (t1 - t0))
print(tsne_results)
return tsne_results.tolist()
def filtered_projection(similar_key, vocab, type="input", key="word"):
global metadata_all
vocab_proj = vocab.copy()
## tnse projection Input words
source_words_voc_similar = set()
# for words_set in similar_key:
for key_i in similar_key:
words_set = similar_key[key_i]
source_words_voc_similar.update(words_set['similar_topk'])
print(len(source_words_voc_similar))
# source_embeddings_filtered = {key: metadata_all['input']['words'][0][key] for key in source_words_voc_similar}
source_embeddings_filtered = {key_value: metadata_all[type][key][0][key_value] for key_value in source_words_voc_similar}
vocab_proj.update(source_embeddings_filtered)
## vocab_proj add
try:
result_TSNE = embds_input_projection_vocab(vocab_proj, key=key[:-1]) ## singular => without 's'
dict_projected_embds_all = {str(embds[2]): [embds[0], embds[1], embds[2], embds[3], embds[4]] for embds in result_TSNE}
except:
print('TSNE error', type, key)
dict_projected_embds_all = {}
# print(result_TSNE)
return dict_projected_embds_all
def first_function(w1, model):
global metadata_all
#translate and get internal values
# print(w1)
sentences = w1.split("\n")
all_sentences = []
translated_text = ''
input_embeddings = []
output_embeddings = []
for sentence in sentences :
# print(sentence, end=";")
params = translation_model(sentence, model)
all_sentences.append(params)
# print(len(params))
translated_text += params[0] + ' \n'
input_embeddings.append({
'embeddings': params[3].detach(), ## create a vocabulary with the set of embeddings
'tokens': params[2].tolist(), # one translation = one sentence
# 'texts' : dict_tokenizer_tr[model].decode(params[2].tolist())
})
output_embeddings.append({
'embeddings' : params[4].detach(),
'tokens': params[1].sequences.tolist(),
# 'texts' : dict_tokenizer_tr[model].decode(params[1].sequences.tolist())
})
# print(input_embeddings)
# print(output_embeddings)
## Build FAISS index
# ---> preload faiss using the respective model with a initial dataset.
result_input = build_reference(input_embeddings,model)
result_output = build_reference(output_embeddings,model)
# print(result_input, result_output)
metadata_all = {'input': result_input, 'output': result_output}
### get translation
return [translated_text, params]
def first_function_tr(w1, model, var2={}):
global metadata_all
#Translate and find similar tokens in token
print("SEARCH -- ")
sentences = w1.split("\n")
all_sentences = []
translated_text = ''
input_embeddings = []
output_embeddings = []
for sentence in sentences :
# print(sentence, end=";")
params = translation_model(sentence, model)
all_sentences.append(params)
# print(len(params))
translated_text += params[0] + ' \n'
input_embeddings.append({
'embeddings': params[3].detach(), ## create a vocabulary with the set of embeddings
'tokens': params[2].tolist(), # one translation = one sentence
# 'texts' : dict_tokenizer_tr[model].decode(params[2].tolist()[0])
})
output_embeddings.append({
'embeddings' : params[4].detach(),
'tokens': params[1].sequences.tolist(),
# 'texts' : dict_tokenizer_tr[model].decode(params[1].sequences.tolist())
})
## Build FAISS index
# ---> preload faiss using the respective model with a initial dataset.
result_search = {}
result_search['input'] = build_search(input_embeddings, model, type='input')
result_search['output'] = build_search(output_embeddings, model, type='output')
# D, I, meta, vocab_words, sentence_words_list = result_input['words']# [2] # D ; I ; meta
# md = metadata_all['input']['words'][2]
# qi_pos = 0
# similar_words = []
# for dist, ind in zip(D,I):
# try:
# similar_words.append({
# 'word': meta[qi_pos]['word'],
# "similar_topk": [md[i_index]['word'] for i_index in ind if (i_index != -1) ],
# "distance": [D[qi_pos][i] for (i, i_index) in enumerate(ind) if (i_index != -1)],
# })
# except:
# print("\n ERROR ", qi_pos, dist, ind)
# qi_pos += 1
# similar_vocab_queries = similar_vocab_queries[3]
# result_output = build_search(output_embeddings, model, type="output")
## {'tokens': {'D': D, 'I': I, 'meta': meta, 'vocab_queries': vocab_queries, 'similar':similar_tokens},
## 'words': {'D':Dw,'I': Iw, 'meta': metaw, 'vocab_queries':words_vocab_queries, 'sentence_key_list': sentence_words_list, 'similar': similar_words}
## }
# print(result_input, result_output)
# json_out['input']['tokens'] = { 'similar_queries' : result_input['token'][5], # similarity and distance dict.
# 'tnse': dict_projected_embds_all, #projected points (all)
# 'key_text_list': result_input['token'][4], # current sentences keys
# }
json_out = {'input': {'tokens': {}, 'words': {}}, 'output': {'tokens': {}, 'words': {}}}
dict_projected = {}
for type in ['input', 'output']:
dict_projected[type] = {}
for key in ['tokens', 'words']:
similar_key = result_search[type][key]['similar']
vocab = result_search[type][key]['vocab_queries']
dict_projected[type][key] = filtered_projection(similar_key, vocab, type=type, key=key)
json_out[type][key]['similar_queries'] = similar_key
json_out[type][key]['tnse'] = dict_projected[type][key]
json_out[type][key]['key_text_list'] = result_search[type][key]['sentence_key_list']
return [translated_text, [ json_out, json_out['output']['words'], json_out['output']['tokens']] ]
from pathlib import Path
## First create html and divs
html = """
<html>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.0/jquery.min"></script>
<script async data-require="[email protected]" data-semver="3.5.3"
src="//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.js"></script>
<body>
<div id="select_div">
<select id="select_type" class="form-select" aria-label="select example" hidden>
<option selected value="words">Words</option>
<option value="tokens">Tokens</option>
</select>
</div>
<div id="d3_embed_div">
<div class="row">
<div class="col-6">
<div id="d3_embeds_input_words" class="d3_embed words"></div>
</div>
<div class="col-6">
<div id="d3_embeds_output_words" class="d3_embed words"></div>
</div>
<div class="col-6">
<div id="d3_embeds_input_tokens" class="d3_embed tokens"></div>
</div>
<div class="col-6">
<div id="d3_embeds_output_tokens" class="d3_embed tokens"></div>
</div>
</div>
</div>
<div id="d3_graph_div">
<div class="row">
<div class="col-4">
<div id="d3_graph_input_words" class="d3_graph words"></div>
</div>
<div class="col-4">
<div id="similar_input_words" class=""></div>
</div>
<div class="col-4">
<div id="d3_graph_output_words" class="d3_graph words"></div>
<div id="similar_output_words" class="d3_graph words"></div>
</div>
</div>
<div class="row">
<div class="col-6">
<div id="d3_graph_input_tokens" class="d3_graph tokens"></div>
<div id="similar_input_tokens" class="d3_graph tokens"></div>
</div>
<div class="col-6">
<div id="d3_graph_output_tokens" class="d3_graph tokens"></div>
<div id="similar_output_tokens" class="d3_graph tokens"></div>
</div>
</div>
</div>
</body>
</html>
"""
html0 = """
<html>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.0/jquery.min"></script>
<script async data-require="[email protected]" data-semver="3.5.3"
src="//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.js"></script>
<body>
<div id="select_div">
<select id="select_type" class="form-select" aria-label="select example" hidden>
<option selected value="words">Words</option>
<option value="tokens">Tokens</option>
</select>
</div>
</body>
</html>
"""
html_col1 = """
<div id="d3_graph_input_words" class="d3_graph words"></div>
<div id="d3_graph_input_tokens" class="d3_graph tokens"></div>
"""
html_col2 = """
<div id="similar_input_words" class=""></div>
<div id="similar_output_words" class=""></div>
<div id="similar_input_tokens" class=" "></div>
<div id="similar_output_tokens" class=" "></div>
"""
html_col3 = """
<div id="d3_graph_output_words" class="d3_graph words"></div>
<div id="d3_graph_output_tokens" class="d3_graph tokens"></div>
"""
# # <div class="row">
# <div class="col-6" id="d3_legend_data_source"> </div>
# <div class="col-6" id="d3_legend_similar_source"> </div>
# </div>
def second_function(w1,j2):
# json_value = {'one':1}# return f"{w1['two']} in sentence22..."
# to transfer the data to json.
print("second_function -- after the js", w1,j2)
return "transition to second js function finished."
paths = []
def save_index(model) :
names = []
with open(model + '_metadata_ref.pkl', 'wb') as f:
pickle.dump(metadata_all, f)
names.append(model + '_metadata_ref.pkl')
for type in ['tokens','words']:
for kind in ['input', 'output']:
## save index file
name = model + "_" + kind + "_"+ type + ".index"
write_index(metadata_all[kind][type][1], name)
names.append(name)
print("in save index done")
return gr.File(names)
with gr.Blocks(js="plotsjs.js") as demo:
gr.Markdown(
"""
# MAKE NMT Workshop \t `Embeddings representation`
""")
with gr.Row():
with gr.Column(scale=1):
model_radio_c = gr.Radio(choices=['en-es', 'en-zh', 'en-fr', 'en-ar'], value="en-es", label= '', container=False)
with gr.Column(scale=2):
gr.Markdown(
"""
### Reference Translation Sentences
Enter at least 50 sentences to be used as comparison.
This is submitted just once.
""")
in_text = gr.Textbox(lines=2, label="reference source text")
out_text = gr.Textbox(label="reference target text", interactive=False)
out_text2 = gr.Textbox(visible=False)
var2 = gr.JSON(visible=False)
btn = gr.Button("Reference Translation")
# save_index_btn = gr.Button("Download reference index")
# file_obj = gr.File(label="Input File")
# input = file_obj
save_index_btn = gr.Button("Generate index files to download ",)
tab2_outputs = gr.File()
input = tab2_outputs
# save_output = gr.Button("Download", link="/file=en-es_input_tokens.index")
with gr.Column(scale=3):
gr.Markdown(
"""
### Translation Sentences
Sentences to be analysed.
""")
in_text_tr = gr.Textbox(lines=2, label="source text")
out_text_tr = gr.Textbox(label="target text", interactive=False)
out_text2_tr = gr.Textbox(visible=False)
var2_tr = gr.JSON(visible=False)
btn_faiss= gr.Button("Translation ")
gr.Button("Download", link="/file=en-es_input_tokens.index")
with gr.Row():
# input_mic = gr.HTML(html)
with gr.Column(scale=1):
input_mic = gr.HTML(html0)
input_html2 = gr.HTML(html_col2)
with gr.Column(scale=2):
input_html1 = gr.HTML(html_col1)
# with gr.Column(scale=2):
with gr.Column(scale=2):
input_html3 = gr.HTML(html_col3)
## first function input w1, model ; return out_text, var2; it does first function and js;
btn.click(first_function, [in_text, model_radio_c], [out_text,var2], js="(in_text,model_radio_c) => testFn_out(in_text,model_radio_c)") #should return an output comp.
btn_faiss.click(first_function_tr, [in_text_tr, model_radio_c], [out_text_tr,var2_tr], js="(in_text_tr,model_radio_c) => testFn_out(in_text_tr,model_radio_c)") #should return an output comp.
## second function input out_text(returned in first_function), [json]var2(returned in first_function) ;
## second function returns out_text2, var2; it does second function and js(with the input params);
out_text.change(second_function, [out_text, var2], out_text2, js="(out_text,var2) => testFn_out_json(var2)") #
out_text_tr.change(second_function, [out_text_tr, var2_tr], out_text2_tr, js="(out_text_tr,var2_tr) => testFn_out_json_tr(var2_tr)") #
save_index_btn.click(save_index, [model_radio_c], [tab2_outputs])
# tab2_submit_button.click(func2,
# inputs=tab2_inputs,
# outputs=tab2_outputs)
# run script function on load,
# demo.load(None,None,None,js="plotsjs.js")
# allowed_paths
if __name__ == "__main__":
demo.launch(allowed_paths=["./", ".", "/"]) |