--- title: Liveportrait_video emoji: 😻 colorFrom: blue colorTo: indigo sdk: gradio sdk_version: 4.38.1 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
🔥 For more results, visit LivePortrait homepage 🔥
Or, you can change the input by specifying the `-s` and `-d` arguments: ```bash python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 # disable pasting back to run faster python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback # more options to see python inference.py -h ``` For video: you can change the input by specifying the `-sd` and `-d` arguments: ```bash python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True # disable pasting back to run faster python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True --no_flag_pasteback ``` #### Driving video auto-cropping 📕 To use your own driving video, we **recommend**: - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`. - Focus on the head area, similar to the example videos. - Minimize shoulder movement. - Make sure the first frame of driving video is a frontal face with **neutral expression**. Below is a auto-cropping case by `--flag_crop_driving_video`: ```bash python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video ``` If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually. #### Template making You can also use the `.pkl` file auto-generated to speed up the inference, and **protect privacy**, such as: ```bash python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl ``` **Discover more interesting results on our [Homepage](https://liveportrait.github.io)** 😊 ### 4. Gradio interface 🤗 We also provide a Gradio interface for a better experience, just run by: ```bash python app.py ``` You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs! ## Acknowledgements We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface), [LivePortrait](https://github.com/KwaiVGI/LivePortrait) repositories, for their open research and contributions. ## Citation 💖 ```bibtex @article{guo2024liveportrait, title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control}, author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di}, journal = {arXiv preprint arXiv:2407.03168}, year = {2024} } ```